Wageningen Food Safety Research (WFSR), Part of Wageningen University and Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands.
Animal Sciences Group, Wageningen University, De Elst 1, 6708 WD, Wageningen, The Netherlands.
Arch Toxicol. 2024 Nov;98(11):3777-3795. doi: 10.1007/s00204-024-03851-x. Epub 2024 Aug 31.
Humans can be exposed to per- and polyfluoroalkyl substances (PFASs) via many exposure routes, including diet, which may lead to several adverse health effects. So far, little is known about PFAS transport across the human intestinal barrier. In the current study, we aimed to assess the transport of 5 PFASs (PFOS, PFOA, PFNA, PFHxS and HFPO-DA) in a human induced pluripotent stem cell (hiPSC)-derived intestinal epithelial cell (IEC) model. This model was extensively characterized and compared with the widely applied human colonic adenocarcinoma cell line Caco-2 and a human primary IEC-based model, described to most closely resemble in vivo tissue. The hiPSC-derived IEC layers demonstrated polarized monolayers with tight junctions and a mucus layer. The monolayers consisted of enterocytes, stem cells, goblet cells, enteroendocrine cells, and Paneth cells that are also present in native tissue. Transcriptomics analysis revealed distinct differences in gene expression profiles, where the hiPSC-derived IECs showed the highest expression of intestinal tissue-specific genes relative to the primary IEC-based model and the Caco-2 cells clustered closer to the primary IEC-based model than the hiPSC-derived IECs. The order of PFAS transport was largely similar between the models and the apparent permeability (P) values of PFAS in apical to basolateral direction in the hiPSC-derived IEC model were in the following order: PFHxS > PFOA > HFPO-DA > PFNA > PFOS. In conclusion, the hiPSC-derived IEC model highly resembles human intestinal physiology and is therefore a promising novel in vitro model to study transport of chemicals across the intestinal barrier for risk assessment of chemicals.
人类可以通过多种暴露途径接触到全氟和多氟烷基物质(PFASs),包括饮食,这可能导致多种健康不良影响。迄今为止,人们对 PFAS 穿过人体肠道屏障的转运知之甚少。在目前的研究中,我们旨在评估 5 种 PFAS(PFOS、PFOA、PFNA、PFHxS 和 HFPO-DA)在人诱导多能干细胞(hiPSC)衍生的肠上皮细胞(IEC)模型中的转运。该模型经过了广泛的表征,并与广泛应用的人结肠腺癌细胞系 Caco-2 和基于人原代 IEC 的模型进行了比较,该模型被描述为最接近体内组织。hiPSC 衍生的 IEC 层表现出具有紧密连接和黏液层的极化单层。这些单层由肠细胞、干细胞、杯状细胞、肠内分泌细胞和潘氏细胞组成,这些细胞也存在于天然组织中。转录组学分析显示,基因表达谱存在明显差异,其中 hiPSC 衍生的 IEC 相对基于原代 IEC 的模型表现出最高的肠道组织特异性基因表达,而 Caco-2 细胞聚类更接近基于原代 IEC 的模型,而不是 hiPSC 衍生的 IEC。PFAS 转运的顺序在模型之间基本相似,hiPSC 衍生的 IEC 模型中 PFAS 的表观渗透(P)值从顶侧向基底侧的顺序为:PFHxS>PFOA>HFPO-DA>PFNA>PFOS。总之,hiPSC 衍生的 IEC 模型高度模拟人体肠道生理学,因此是研究化学物质穿过肠道屏障转运以进行化学物质风险评估的有前途的新型体外模型。