Suppr超能文献

生物炭改性通过改变细菌群落、降解相关基因和代谢途径来加速土壤莠去津的生物降解。

Biochar modification accelerates soil atrazine biodegradation by altering bacterial communities, degradation-related genes and metabolic pathways.

机构信息

College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China.

Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, PR China.

出版信息

J Hazard Mater. 2024 Nov 5;479:135693. doi: 10.1016/j.jhazmat.2024.135693. Epub 2024 Aug 30.

Abstract

Atrazine is one of the most used herbicides, posing non-neglectable threats to ecosystem and human health. This work studied the performance and mechanisms of surface-modified biochar in accelerating atrazine biodegradation by exploring the changes in atrazine metabolites, bacterial communities and atrazine degradation-related genes. Among different types of biochar, nano-hydroxyapatite modified biochar achieved the highest degradation efficiency (85.13 %), mainly attributing to the increasing pH, soil organic matter, soil humus, and some enriched indigenous bacterial families of Bradyrhizobiaceae, Rhodospirillaceae, Methylophilaceae, Micrococcaceae, and Xanthobacteraceae. The abundance of 4 key atrazine degradation-related genes (atzA, atzB, atzC and triA) increased after biochar amendment, boosting both dechlorination and dealkylation pathways in atrazine metabolism. Our findings evidenced that biochar amendment could accelerate atrazine biodegradation by altering soil physicochemical properties, microbial composition and atrazine degradation pathways, providing clues for improving atrazine biodegradation performance at contaminated sites.

摘要

莠去津是一种使用广泛的除草剂,对生态系统和人类健康构成了不可忽视的威胁。本研究通过探究莠去津代谢物、细菌群落和莠去津降解相关基因的变化,探讨了表面修饰生物炭在加速莠去津生物降解方面的性能和作用机制。在不同类型的生物炭中,纳米羟基磷灰石修饰生物炭的降解效率最高(85.13%),这主要归因于 pH 值、土壤有机质、土壤腐殖质以及 Bradyrhizobiaceae、Rhodospirillaceae、Methylophilaceae、Micrococcaceae 和 Xanthobacteraceae 等一些丰富的土著细菌家族的增加。生物炭添加后,4 个关键的莠去津降解相关基因(atzA、atzB、atzC 和 triA)的丰度增加,促进了莠去津代谢中的脱氯和脱烷基化途径。本研究结果表明,生物炭添加可以通过改变土壤理化性质、微生物组成和莠去津降解途径来加速莠去津的生物降解,为改善污染场地中莠去津的生物降解性能提供了线索。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验