Suppr超能文献

转录组结合单细胞技术探索骨关节炎中的缺氧相关生物标志物。

Transcriptome combined with single cell to explore hypoxia-related biomarkers in osteoarthritis.

机构信息

Department of Pediatric Orthopedics, Shanghai Children's Medical Center GuiZhou Hospital, Shanghai Jiao Tong University School of Medicine, Guiyang 550081, Guizhou Province, China.

Department of Orthopedic Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, Guizhou Province, China.

出版信息

J Chromatogr B Analyt Technol Biomed Life Sci. 2024 Oct 1;1246:124274. doi: 10.1016/j.jchromb.2024.124274. Epub 2024 Aug 15.

Abstract

Osteoarthritis (OA) is a prevalent degenerative condition among the elderly on a global scale. Research has demonstrated that hypoxia can promote chondrocyte apoptosis and autophagy leading to OA. Hence, it was vital to screen the hypoxia related biomarkers in OA. We introduced transcriptome data to screen out differentially expressed genes (DEGs) in GSE114007 and GSE57218 (OA samples vs control samples). We performed differential expression analysis in key annotated cell to obtain differentially expressed marker genes at the single-cell level (GSE169454). Venn diagram was executed to identify hypoxia related differentially expressed genes (HR-DEGs) associated with OA. Further, feature genes were obtained through the application of least absolute shrinkage and selection operator (LASSO) regression and the Random Forest (RF) algorithm. Receiver operating characteristic (ROC) and expression level analysis were used to identify hypoxia related biomarkers in OA. We further performed immune infiltration and gene set enrichment analysis (GSEA) based on hypoxia related biomarkers. Finally, we analyzed the expression of biomarkers in single-cell level. We identified 2351 DEGs associated with OA. At the single-cell level, 242 differentially expressed marker genes were obtained. 12 HR-DEGs were retained venn diagram. Subsequently, three hypoxia related biomarkers (ADM, DDIT3 and MAFF) were identified. Moreover, we got 15 significantly different immune cells. Finally, we found a lower expression of ADM, DDIT3 and MAFF in OA group compared to the control group in ECs. Overall, we obtained three hypoxia related biomarkers (ADM, DDIT3 and MAFF) associated with OA, which established a theoretical basis for addressing OA.

摘要

骨关节炎(OA)是一种在全球范围内普遍存在的老年退行性疾病。研究表明,缺氧可促进软骨细胞凋亡和自噬,导致 OA。因此,筛选 OA 相关的缺氧标志物至关重要。我们引入转录组数据筛选出 GSE114007 和 GSE57218 中 OA 样本与对照样本之间的差异表达基因(DEGs)。我们在关键注释细胞中进行差异表达分析,以获得单细胞水平的差异表达标记基因(GSE169454)。执行 Venn 图以鉴定与 OA 相关的缺氧相关差异表达基因(HR-DEGs)。进一步通过应用最小绝对收缩和选择算子(LASSO)回归和随机森林(RF)算法获得特征基因。使用接收者操作特征(ROC)和表达水平分析来识别 OA 中的缺氧相关生物标志物。我们进一步基于缺氧相关生物标志物进行免疫浸润和基因集富集分析(GSEA)。最后,我们分析了单细胞水平生物标志物的表达。我们确定了 2351 个与 OA 相关的 DEGs。在单细胞水平上,获得了 242 个差异表达的标记基因。通过 Venn 图保留了 12 个 HR-DEGs。随后,鉴定出三个与缺氧相关的生物标志物(ADM、DDIT3 和 MAFF)。此外,我们得到了 15 种明显不同的免疫细胞。最后,我们发现 OA 组内皮细胞中 ADM、DDIT3 和 MAFF 的表达低于对照组。总体而言,我们获得了三个与 OA 相关的缺氧相关生物标志物(ADM、DDIT3 和 MAFF),为解决 OA 问题奠定了理论基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验