Department of Chemistry, Collage of Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia; Chemistry Department, Faculty of Applied Science, Taiz University, Taiz, Yemen.
Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
Int J Biol Macromol. 2024 Nov;279(Pt 2):135211. doi: 10.1016/j.ijbiomac.2024.135211. Epub 2024 Aug 30.
Immobilization of enzymes on suitable supports is a critical approach for enhancing enzyme stability, reusability, and overall catalytic efficiency. This study explores the immobilization of Candida rugosa lipase on zirconium-based 2-methylimidazole (ZrMI) nanoparticles, aiming to develop a stable and reusable biocatalyst. The ZrMI was produced via a solvothermal technique and analyzed using various characterization methods. Candida rugose lipase was immobilized using cross-linking agents, achieving an 87 % immobilization efficiency. The immobilized enzyme exhibited significantly enhanced thermal stability, broader pH tolerance, and increased catalytic efficiency compared to free C. rugose lipase. The ZrMI@lipase retained 69 % of its enzymatic activity following a 60-day storage period at 4 °C. Notably, it displayed significant reusability, maintaining 65 % of its original activity after undergoing 15 catalytic cycles. Examination of the kinetics revealed that the immobilized enzyme possessed a heightened substrate affinity (Km of 4.1 mM) and maximal reaction rate (Vmax of 85.7 μmol/ml/min) in comparison to the free enzyme (Km of 5.4 mM and Vmax of 69 μmol/ml/min), indicating enhanced catalytic efficiency. Validation through zeta potential and hydrodynamic size assessments verified the successful binding of the enzyme and the consistent colloidal characteristics. These results suggest that ZrMI is a promising support for C. rugose lipase immobilization, offering improved stability and reusability for various industrial applications. The study highlights the potential of ZrMI@lipase as an efficient and durable biocatalyst, contributing to advancements in enzyme immobilization technology and sustainable industrial processes.
固定化酶在合适的载体上是提高酶稳定性、可重复使用性和整体催化效率的关键方法。本研究探索了将 Candida rugosa 脂肪酶固定在基于锆的 2-甲基咪唑(ZrMI)纳米粒子上,旨在开发一种稳定且可重复使用的生物催化剂。ZrMI 通过溶剂热技术制备,并通过各种表征方法进行分析。使用交联剂将 Candida rugosa 脂肪酶固定化,实现了 87%的固定化效率。与游离的 C. rugosa 脂肪酶相比,固定化酶表现出显著增强的热稳定性、更宽的 pH 耐受性和更高的催化效率。ZrMI@lipase 在 4°C 下储存 60 天后,仍保留 69%的酶活性。值得注意的是,它具有显著的可重复使用性,经过 15 次催化循环后,仍保持 65%的原始活性。动力学研究表明,固定化酶具有更高的底物亲和力(Km 为 4.1 mM)和最大反应速率(Vmax 为 85.7 μmol/ml/min),与游离酶(Km 为 5.4 mM 和 Vmax 为 69 μmol/ml/min)相比,表明催化效率得到了提高。通过zeta 电位和水动力粒径评估进行的验证证实了酶的成功结合和一致的胶体特性。这些结果表明,ZrMI 是 Candida rugosa 脂肪酶固定化的一种有前途的载体,为各种工业应用提供了提高的稳定性和可重复使用性。该研究突出了 ZrMI@lipase 作为高效且耐用的生物催化剂的潜力,为酶固定化技术和可持续工业过程的发展做出了贡献。