College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
College of Automation and Software Engineering, Shanxi University, Taiyuan 030006, PR China.
Int J Biol Macromol. 2024 Nov;279(Pt 1):135083. doi: 10.1016/j.ijbiomac.2024.135083. Epub 2024 Aug 30.
User-friendly in-field sensing protocol is crucial for the effective tracing of intended analytes under less-developed countries or resources-limited environments. Nevertheless, existing sensing strategies require professional technicians and expensive laboratory-based instrumentations, which are not capable for point-of-care on-site analyses. To address this issue, artificial intelligence handheld sensor has been designed for direct reading of Ni and EDTA in food samples. The sensing platform incorporates smartphone with machine learning-driven application, 3D-printed handheld device, and cellulose paper microfluidic chip stained with ratiometric red-green-emission carbon dots (CDs). Intriguingly, Ni introduction makes green fluorescent (FL) of CDs glow but red FL fade because of the coordination of Ni with CDs verified by density functional theory (DFT), concurrently manifesting continuous FL colour transition from red to green. Subsequent addition of EDTA renders FL of CDs-Ni recover owing to the capture of Ni from CDs by EDTA based on strong chelation effect of EDTA on Ni confirmed via DFT, accompanying with a noticeable colour returning from green to red. Inspired by above FL phenomena, CDs-based cellulose paper microfluidic chips are first fabricated to facilitate point-of-care testing of Ni and EDTA. Designed fully-automatic handheld sensor is utilized to directly output Ni and EDTA concentration in water, milk, spinach, bread, and shampoo based on wide linear ranges of 0-48 μM and 0-96 μM, and low limits of detection of 0.274 μM and 0.624 μM, respectively. The proposed protocol allows for speedy straightforward on-site determination of target analytes, which will trigger the development of automated and intelligent sensors in near future.
用户友好型现场传感协议对于在欠发达国家或资源有限的环境下有效追踪目标分析物至关重要。然而,现有的传感策略需要专业技术人员和昂贵的实验室基础仪器,无法进行即时现场分析。为了解决这个问题,已经设计了一种人工智能手持式传感器,用于直接读取食品样品中的镍和 EDTA。传感平台结合了智能手机和机器学习驱动的应用程序、3D 打印的手持式设备以及用比率型红绿发射碳点(CDs)染色的纤维素纸微流控芯片。有趣的是,由于镍与 CDs 的配位得到了密度泛函理论(DFT)的验证,镍的引入使得 CDs 的绿色荧光(FL)发光而红色 FL 褪色,同时表现出从红色到绿色的连续 FL 颜色转变。随后加入 EDTA 使得 CDs-Ni 的 FL 恢复,这是由于 EDTA 通过 DFT 证实的对 Ni 的强螯合作用从 CDs 中捕获 Ni,同时伴随着从绿色到红色的明显颜色恢复。受上述 FL 现象的启发,首次制备了基于 CDs 的纤维素纸微流控芯片,以方便即时现场测试 Ni 和 EDTA。设计的全自动手持式传感器可根据 0-48 μM 和 0-96 μM 的宽线性范围以及 0.274 μM 和 0.624 μM 的低检测限,直接输出水中、牛奶、菠菜、面包和洗发水中的 Ni 和 EDTA 浓度。该方案允许快速直接在现场测定目标分析物,这将在不久的将来引发自动化和智能传感器的发展。