Suppr超能文献

采用“绿”碳点同时比率荧光的定制印刷微流控芯片,用于检测猪肉和水样中的多种抗生素残留。

Custom-printed microfluidic chips using simultaneous ratiometric fluorescence with "Green" carbon dots for detection of multiple antibiotic residues in pork and water samples.

机构信息

School of materials Science and Engineering, Jiangsu University, Zhenjiang, China.

Changzhou Engineering and Technology Institute of Jiangsu University, Changzhou, China.

出版信息

J Food Sci. 2024 Sep;89(9):5980-5992. doi: 10.1111/1750-3841.17239. Epub 2024 Jul 23.

Abstract

In the evolving field of food safety, rapid and precise detection of antibiotic residues is crucial. This study aimed to tackle this challenge by integrating advanced inkjet printing technology with sophisticated microfluidic paper-based analytical devices (µPADs). The µPAD design utilized "green" quantum dots synthesized via an eco-friendly hydrothermal method using green white mulberry leaves as the carbon source, serving as the key fluorescent detection material. The action mechanism involved a photoinduced electron transfer system using red carbon dots (CDs) as electron donors and blue CDs combined with two-dimensional layered molybdenum disulfide (MoS) nanosheets as electron acceptors. This system could quickly detect antibiotics within 10 min in pork and water samples, demonstrating high sensitivity and recovery rates: 6.5 pmol/L at 99.75%-110% for sulfadimethoxine, 3.3 pmol/L at 99%-105% for sulfamethoxazole, and 8.5 pmol/L at 98.5%-105% for tetracycline. It achieved a relative standard deviation under 5%, ensuring reliability and reproducibility. The fabricated sensor offered a promising application for the rapid and efficient on-site detection of antibiotic residues in food.

摘要

在食品安全领域不断发展的过程中,快速准确地检测抗生素残留至关重要。本研究旨在通过将先进的喷墨打印技术与复杂的微流控纸基分析器件(µPAD)集成来应对这一挑战。µPAD 设计利用绿色白桑树叶作为碳源,通过环保水热法合成的“绿色”量子点作为关键荧光检测材料。作用机制涉及使用红色碳点(CDs)作为电子供体和蓝色 CDs 与二维层状二硫化钼(MoS)纳米片作为电子受体的光致电子转移系统。该系统可在 10 分钟内快速检测猪肉和水样中的抗生素,具有高灵敏度和回收率:磺胺二甲氧嘧啶为 6.5 pmol/L,在 99.75%-110%范围内;磺胺甲恶唑为 3.3 pmol/L,在 99%-105%范围内;四环素为 8.5 pmol/L,在 98.5%-105%范围内。其相对标准偏差低于 5%,确保了可靠性和重现性。该传感器为现场快速高效检测食品中的抗生素残留提供了一种有前途的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验