Suppr超能文献

阴离子交换树脂和 UV/亚硫酸盐体系对长链和短链全氟/多氟烷基物质的吸附/解吸和降解作用。

Sorption/desorption and degradation of long- and short-chain PFAS by anion exchange resin and UV/sulfite system.

机构信息

Chemical Process Engineering, University of Oulu, P.O. Box 4300, FIN-90014, Oulu, Finland.

Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.

出版信息

Environ Pollut. 2024 Nov 15;361:124847. doi: 10.1016/j.envpol.2024.124847. Epub 2024 Aug 30.

Abstract

A combined sorption/desorption and UV/sulfite degradation process was investigated for achieving efficient elimination of PFAS from water. Two gel-type resins, Purolite A532E and A600, and one macroporous resin, Purolite A860, were firstly tested for the sorption of individual PFPrA, PFHxA, PFOA, PFOS, and GenX at different concentrations. Sorption data and density functional theory (DFT) calculations revealed that electrostatic interactions predominated for short-chain PFAS sorption and hydrophobic interactions played a more significant role for long-chain PFAS than for short-chain PFAS. A600 and A860 were selected for desorption tests with 0.025% NaOH, 5% NaCl, and 5% NHCl solution with or without 20% ethanol (EtOH) due to their high sorption capacity for all target PFAS. The mixture of 5% NHCl and 20% EtOH as the desorption solution typically showed the highest desorption efficiency. PFOS was the most resistant for desorption but its desorption could be enhanced by stronger mixing conditions (in 5% NaCl + 20% EtOH). Direct degradation of studied PFAS in the desorption solution (0.025% NaOH, 5% NaCl, and 5% NHCl) by UV/sulfite achieved 97.6-100% degradation and 46.6-86.1% defluorination. EtOH hindered degradation and thus should be separated from the water before UV/sulfite degradation.

摘要

采用吸附/解吸和 UV/亚硫酸盐降解相结合的方法,从水中高效去除全氟烷基物质(PFAS)。首先,选用 Purolite A532E 和 A600 两种凝胶型树脂和 Purolite A860 一种大孔树脂,对不同浓度的单个全氟己酸(PFPrA)、全氟庚酸(PFHxA)、全氟辛酸(PFOA)、全氟辛烷磺酸(PFOS)和 GenX 进行了吸附实验。吸附数据和密度泛函理论(DFT)计算表明,静电相互作用对短链 PFAS 的吸附起主导作用,而疏水相互作用对长链 PFAS 的吸附比对短链 PFAS 的吸附更为重要。A600 和 A860 由于对所有目标 PFAS 具有较高的吸附能力,因此选择用于 0.025% NaOH、5% NaCl 和 5% NHCl 溶液(含或不含 20%乙醇(EtOH))的解吸实验。含有 5% NHCl 和 20% EtOH 的混合物通常显示出最高的解吸效率。PFOS 是最难解吸的,但通过更强的混合条件(在 5% NaCl + 20% EtOH 中)可以提高其解吸效率。研究中的 PFAS 在解吸溶液(0.025% NaOH、5% NaCl 和 5% NHCl)中的直接 UV/亚硫酸盐降解可实现 97.6-100%的降解和 46.6-86.1%的脱氟。EtOH 会阻碍降解,因此在 UV/亚硫酸盐降解之前应将其从水中分离出来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验