Tashkandy Yusra A, Bakr M E, Benchiha Sid Ahmed, Sapkota Laxmi Prasad, Balogun Oluwafemi Samson, Mekiso Getachew Tekle, Hussam Eslam, Gemeay Ahmed M
Department of Statistics and Operations Research, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
Laboratory of Statistics and Stochastic Processes, University of Djillali Liabes, BP 89, Sidi Bel Abbes, 22000, Algeria.
Sci Rep. 2024 Aug 31;14(1):20262. doi: 10.1038/s41598-024-69884-5.
This research introduces a novel two-parameter distribution, the power-modified XLindley distribution, developed through the application of power transformation techniques to the existing modified XLindley distribution. This new distribution enhances flexibility and adaptability in statistical modeling. We conduct a thorough examination of its statistical properties, exploring its potential to improve data fitting and modeling accuracy. To assess the effectiveness of the model, we employ multiple estimation techniques and evaluate their performance through extensive simulation experiments. Our findings indicate that the maximum product of the spacings method is particularly effective for parameter estimation. To demonstrate the practical utility of the proposed model, we apply it to two real-world datasets: one related to flood data and the other to reliability engineering. The results underscore the distribution's superior ability to capture the characteristics of these datasets compared to existing models, highlighting its significance for applications in natural disaster analysis and reliability studies.
本研究引入了一种新型双参数分布——幂变换修正的XLindley分布,它是通过对现有的修正XLindley分布应用幂变换技术而开发的。这种新分布增强了统计建模中的灵活性和适应性。我们对其统计特性进行了全面研究,探索其改善数据拟合和建模准确性的潜力。为了评估模型的有效性,我们采用了多种估计技术,并通过广泛的模拟实验评估它们的性能。我们的研究结果表明,间距乘积最大值法在参数估计方面特别有效。为了证明所提出模型的实际效用,我们将其应用于两个真实世界的数据集:一个与洪水数据相关,另一个与可靠性工程相关。结果强调,与现有模型相比,该分布在捕捉这些数据集特征方面具有卓越能力,突出了其在自然灾害分析和可靠性研究中的应用意义。