Suppr超能文献

比较聚类和表型分析方法在印度人群 2 型糖尿病亚型分类中的应用及其与缓解的关系。

Comparison of clustering and phenotyping approaches for subclassification of type 2 diabetes and its association with remission in Indian population.

机构信息

Freedom From Diabetes Research Foundation, Parth, Ghodke Chowk, Prabhat Rd, Deccan Gymkhana, Pune, Maharashtra, 411004, India.

Government Yoga and Naturopathy Medical College & Hospital, Arumbakkam, Chennai, Tamilnadu, 600106, India.

出版信息

Sci Rep. 2024 Aug 31;14(1):20260. doi: 10.1038/s41598-024-71126-7.

Abstract

Identification of novel subgroups of type 2 diabetes (T2D) has helped improve its management. Most classification techniques focus on clustering or subphenotyping but not on both. This study aimed to compare both these methods and examine the rate of T2D remission in these subgroups in the Indian population. K-means clustering (using age at onset, HbA1C, BMI, HOMA2 IR and HOMA2%B) and subphenotyping (using homeostatic model assessment (HOMA) estimates) analysis was done on the baseline data of 281 patients with recently diagnosed T2D who participated in a 1-year online diabetes management program. Cluster analysis revealed three distinct clusters: severe insulin-deficient diabetes (SIDD), severe insulin-resistant diabetes (SIRD), and mild obesity-related diabetes (MOD) while subphenotyping showed four distinct categories: hyperinsulinemic, insulinopenic, classical, and nascent T2D. Comparison of the two approaches revealed that the clusters aligned with phenotypes based on shared characteristics of insulin sensitivity (IS) and beta cell function (BCF). Clustering correctly identified individuals in nascent group (high IS and BCF) as having mild obesity related diabetes which subphenotyping did not. Post-one-year intervention, higher remission rates were observed in the MOD cluster (p = 0.383) and the nascent phenotype showing high IS and BCF (p = 0.061, Chi-Square test). In conclusion, clustering based on a comprehensive set of parameters appears to be a superior method for classifying T2D compared with pathophysiological subphenotyping. Personalized interventions may be highly effective for newly diagnosed individuals with high IS and BCF and may result in higher remission rates in these individuals. Further large-scale studies are required to validate these findings.

摘要

鉴定 2 型糖尿病(T2D)的新型亚组有助于改善其管理。大多数分类技术侧重于聚类或亚表型,但不包括两者。本研究旨在比较这两种方法,并检查这些亚组中印度人群 T2D 的缓解率。对 281 名新诊断 T2D 患者的基线数据进行了 K-均值聚类(使用发病年龄、HbA1C、BMI、HOMA2 IR 和 HOMA2%B)和亚表型分析(使用稳态模型评估(HOMA)估计值)。聚类分析揭示了三个不同的亚组:严重胰岛素缺乏性糖尿病(SIDD)、严重胰岛素抵抗性糖尿病(SIRD)和轻度肥胖相关糖尿病(MOD),而亚表型则显示了四个不同的类别:高胰岛素血症、胰岛素缺乏症、经典和新生 T2D。两种方法的比较表明,簇与表型基于胰岛素敏感性(IS)和β细胞功能(BCF)的共同特征对齐。聚类正确地将新生组(高 IS 和 BCF)中的个体识别为具有轻度肥胖相关的糖尿病,而亚表型没有。干预一年后,MOD 亚组(p=0.383)和高 IS 和 BCF 的新生表型(p=0.061,卡方检验)的缓解率更高。总之,与基于病理生理亚表型的分类相比,基于一套综合参数的聚类似乎是一种更好的 T2D 分类方法。个性化干预可能对高 IS 和 BCF 的新诊断个体非常有效,并且可能导致这些个体的缓解率更高。需要进一步的大规模研究来验证这些发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d67a/11366003/76cbfc3dc121/41598_2024_71126_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验