Suppr超能文献

使用定向功能性脑网络的数据驱动阈值方法的比较。

Comparison of data-driven thresholding methods using directed functional brain networks.

作者信息

Manickam Thilaga, Ramasamy Vijayalakshmi, Doraisamy Nandagopal

机构信息

Department of Mathematics, Amrita School of Physical Sciences, 77649 Amrita Vishwa Vidyapeetham , Coimbatore, Tamilnadu 641112, India.

College of Engineering and Computing, Georgia Southern University, Statesboro, GA 30458, USA.

出版信息

Rev Neurosci. 2024 Aug 30;36(2):119-138. doi: 10.1515/revneuro-2024-0020. Print 2025 Feb 25.

Abstract

Over the past two centuries, intensive empirical research has been conducted on the human brain. As an electroencephalogram (EEG) records millisecond-to-millisecond changes in the electrical potentials of the brain, it has enormous potential for identifying useful information about neuronal transactions. The EEG data can be modelled as graphs by considering the electrode sites as nodes and the linear and nonlinear statistical dependencies among them as edges (with weights). The graph theoretical modelling of EEG data results in functional brain networks (FBNs), which are fully connected (complete) weighted undirected/directed networks. Since various brain regions are interconnected via sparse anatomical connections, the weak links can be filtered out from the fully connected networks using a process called thresholding. Multiple researchers in the past decades proposed many thresholding methods to gather more insights about the influential neuronal connections of FBNs. This paper reviews various thresholding methods used in the literature for FBN analysis. The analysis showed that data-driven methods are unbiased since no arbitrary user-specified threshold is required. The efficacy of four data-driven thresholding methods, namely minimum spanning tree (MST), minimum connected component (MCC), union of shortest path trees (USPT), and orthogonal minimum spanning tree (OMST), in characterizing cognitive behavior of the normal human brain is analysed using directed FBNs constructed from EEG data of different cognitive load states. The experimental results indicate that both MCC and OMST thresholding methods can detect cognitive load-induced changes in the directed functional brain networks.

摘要

在过去的两个世纪里,人们对人类大脑进行了深入的实证研究。由于脑电图(EEG)记录了大脑电位的毫秒级变化,它在识别有关神经元活动的有用信息方面具有巨大潜力。通过将电极位点视为节点,并将它们之间的线性和非线性统计依赖性视为边(带有权重),EEG数据可以被建模为图。EEG数据的图论建模产生了功能性脑网络(FBN),它是完全连接(完整)的加权无向/有向网络。由于各个脑区通过稀疏的解剖连接相互关联,因此可以使用一种称为阈值化的过程从完全连接的网络中滤除弱连接。在过去几十年中,许多研究人员提出了许多阈值化方法,以更深入地了解FBN中有影响力的神经元连接。本文综述了文献中用于FBN分析的各种阈值化方法。分析表明,数据驱动的方法是无偏的,因为不需要任意用户指定的阈值。使用从不同认知负荷状态的EEG数据构建的有向FBN,分析了四种数据驱动的阈值化方法,即最小生成树(MST)、最小连通分量(MCC)、最短路径树联合(USPT)和正交最小生成树(OMST)在表征正常人类大脑认知行为方面的功效。实验结果表明,MCC和OMST阈值化方法都可以检测到有向功能性脑网络中认知负荷引起的变化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验