Wang Yu, Ai Bin, Jiang Yun, Wang Zengyao, Chen Chong, Xiao Zifan, Xiao Ge, Zhang Gang
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China; College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, PR China.
School of Microelectronics and Communication Engineering, Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, Chongqing University, Chongqing 400044, PR China.
J Colloid Interface Sci. 2025 Jan 15;678(Pt A):818-826. doi: 10.1016/j.jcis.2024.08.215. Epub 2024 Aug 27.
Manipulating the chirality at nanoscale has drawn great attention among scientists, considering its pivotal role in various applications of current interest, including nano-optics, biomedicine, and photocatalysis. In this work, we delve into this arena by fabricating chiral Swiss roll nanoarray (SRNA) continuous films employing colloidal lithography. The technique permits the dimension of Swiss roll metamaterials to reduce to nanoscale, thus achieving chiroptical response (circular dichroism (CD)) in the visible region. The interplay between the CD signals and plasmon resonance modes is revealed through theoretical simulations, enabling a deep understanding of chiral plasmonic metamaterials. The polarization-sensitive photocatalytic activity of chiral SRNAs is investigated, noting a marked increase in the reaction rate when the chirality of SRNAs matches with the handedness of circularly polarized light (CPL). Notably, the SRNA continuous films based on substrate possess integration and reusability without complex recycling process, enhancing their practicality in applications like sensing and plasmonic nanochemistry, particularly toward polarization-dependent photocatalysis.
考虑到手性在当前备受关注的各种应用(包括纳米光学、生物医学和光催化)中的关键作用,在纳米尺度上操纵手性已引起科学家们的极大关注。在这项工作中,我们通过采用胶体光刻技术制造手性瑞士卷纳米阵列(SRNA)连续薄膜来深入研究这一领域。该技术使瑞士卷超材料的尺寸减小到纳米尺度,从而在可见光区域实现手性光学响应(圆二色性(CD))。通过理论模拟揭示了CD信号与等离子体共振模式之间的相互作用,从而能够深入理解手性等离子体超材料。研究了手性SRNA的偏振敏感光催化活性,发现当SRNA的手性与圆偏振光(CPL)的旋向匹配时,反应速率显著提高。值得注意的是,基于基底的SRNA连续薄膜具有集成性和可重复使用性,无需复杂的回收过程,增强了它们在传感和等离子体纳米化学等应用中的实用性,特别是对于偏振依赖的光催化。