Rodriguez-Olguin M A, Lipin R, Suominen M, Ruiz-Zepeda F, Castañeda-Morales E, Manzo-Robledo A, Gardeniers J G E, Flox C, Kallio T, Vandichel M, Susarrey-Arce A
Mesoscale Chemical Systems, MESA+ Institute, University of Twente P. O. Box 217 Enschede 7500AE The Netherlands.
Department of Chemical Engineering, MESA+ Institute, University of Twente P. O. Box 217 Enschede 7500AE The Netherlands
J Mater Chem A Mater. 2024 Aug 8;12(47):32821-32835. doi: 10.1039/d4ta04116j. eCollection 2024 Dec 9.
Electrolyzers operate over a range of temperatures; hence, it is crucial to design electrocatalysts that do not compromise the product distribution unless temperature can promote selectivity. This work reports a synthetic approach based on electrospinning to produce NiO:SnO nanofibers (NFs) for selectively reducing CO to formate above room temperature. The NFs comprise compact but disjoined NiO and SnO nanocrystals identified with STEM. The results are attributed to the segregation of NiO and SnO confirmed with XRD. The NFs are evaluated for the CO reduction reaction (CORR) over various temperatures (25, 30, 35, and 40 °C). The highest faradaic efficiencies to formate (FE ) are reached by NiO:SnO NFs containing 50% of NiO and 50% SnO (NiOSnO50NF), and 25% of NiO and 75% SnO (NiOSnO75NF), at an electroreduction temperature of 40 °C. At 40 °C, product distribution is assessed with differential electrochemical mass spectrometry (DEMS), recognizing methane and other species, like formate, hydrogen, and carbon monoxide, identified in an electrochemical flow cell. XPS and EELS unveiled the FE variations due to a synergistic effect between Ni and Sn. DFT-based calculations reveal the superior thermodynamic stability of Ni-containing SnO systems towards CORR over the pure oxide systems. Furthermore, computational surface Pourbaix diagrams showed that the presence of Ni as a surface dopant increases the reduction of the SnO surface and enables the production of formate. Our results highlight the synergy between NiO and SnO, which can promote the electroreduction of CO at temperatures above room temperature.
电解槽在一定温度范围内运行;因此,设计在温度无法促进选择性时不会影响产物分布的电催化剂至关重要。这项工作报道了一种基于静电纺丝的合成方法,用于制备NiO:SnO纳米纤维(NFs),以在室温以上选择性地将CO还原为甲酸盐。通过扫描透射电子显微镜(STEM)鉴定,这些NFs由紧密但不相连的NiO和SnO纳米晶体组成。结果归因于X射线衍射(XRD)证实的NiO和SnO的分离。在不同温度(25、30、35和40°C)下对这些NFs进行了CO还原反应(CORR)评估。含50% NiO和50% SnO的NiO:SnO NFs(NiOSnO50NF)以及含25% NiO和75% SnO的NiO:SnO NFs(NiOSnO75NF)在40°C的电还原温度下达到了最高的甲酸盐法拉第效率(FE)。在40°C时,使用差分电化学质谱(DEMS)评估产物分布,识别在电化学流通池中鉴定出的甲烷和其他物种,如甲酸盐、氢气和一氧化碳。X射线光电子能谱(XPS)和电子能量损失谱(EELS)揭示了由于Ni和Sn之间的协同效应导致的FE变化。基于密度泛函理论(DFT)的计算表明,含Ni的SnO体系相对于纯氧化物体系在CORR方面具有更高的热力学稳定性。此外,计算表面Pourbaix图表明,作为表面掺杂剂的Ni的存在增加了SnO表面的还原能力,并使得能够生成甲酸盐。我们的结果突出了NiO和SnO之间的协同作用,其可以在室温以上的温度下促进CO的电还原。