Li Zhongjian, Cao Ang, Zheng Qiang, Fu Yuanyuan, Wang Tingting, Arul K Thanigal, Chen Jeng-Lung, Yang Bin, Adli Nadia Mohd, Lei Lecheng, Dong Chung-Li, Xiao Jianping, Wu Gang, Hou Yang
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
Institute of Zhejiang University - Quzhou, Quzhou, 324000, China.
Adv Mater. 2021 Jan;33(2):e2005113. doi: 10.1002/adma.202005113. Epub 2020 Nov 30.
Sn-based materials are identified as promising catalysts for the CO electroreduction (CO2RR) to formate (HCOO ). However, their insufficient selectivity and activity remain grand challenges. A new type of SnO nanosheet with simultaneous N dopants and oxygen vacancies (V -rich N-SnO NS) for promoting CO conversion to HCOO is reported. Due to the likely synergistic effect of N dopant and V , the V -rich N-SnO NS exhibits high catalytic selectivity featured by an HCOO Faradaic efficiency (FE) of 83% at -0.9 V and an FE of > 90% for all C1 products (HCOO and CO) at a wide potential range from -0.9 to -1.2 V. Low coordination Sn-N moieties are the active sites with optimal electronic and geometric structures regulated by V and N dopants. Theoretical calculations elucidate that the reaction free energy of HCOO* protonation is decreased on the V -rich N-SnO NS, thus enhancing HCOO selectivity. The weakened H* adsorption energy also inhibits the hydrogen evolution reaction, a dominant side reaction during the CO2RR. Furthermore, using the catalyst as the cathode, a spontaneous Galvanic Zn-CO cell and a solar-powered electrolysis process successfully demonstrated the efficient HCOO generation through CO conversion and storage.
锡基材料被认为是将二氧化碳电还原(CO2RR)为甲酸盐(HCOO–)的有前景的催化剂。然而,它们的选择性和活性不足仍然是巨大的挑战。本文报道了一种新型的同时具有氮掺杂剂和氧空位的SnO纳米片(富V的N-SnO NS),用于促进CO转化为HCOO–。由于N掺杂剂和V可能产生的协同效应,富V的N-SnO NS表现出高催化选择性,其特征在于在-0.9 V时HCOO–的法拉第效率(FE)为83%,并且在-0.9至-1.2 V的宽电位范围内,所有C1产物(HCOO–和CO)的FE均>90%。低配位的Sn-N部分是由V和N掺杂剂调节的具有最佳电子和几何结构的活性位点。理论计算表明,富V的N-SnO NS上HCOO质子化的反应自由能降低,从而提高了HCOO–的选择性。减弱的H吸附能也抑制了析氢反应,这是CO2RR过程中的主要副反应。此外,使用该催化剂作为阴极,一个自发的伽伐尼Zn-CO电池和一个太阳能电解过程成功地证明了通过CO转化和存储有效地生成HCOO–。