Suppr超能文献

使用MTU-Net3 +模型对胎儿心率基线/加速/减速进行自动分析。

Automated analysis of fetal heart rate baseline/acceleration/deceleration using MTU-Net3 + model.

作者信息

Wang Minghan, Li Guangfei, Yang Yimin, Yang Yongxiu, Feng Yongkang, Li Yashuang, Liu Guoli, Hao Dongmei

机构信息

Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, 219 Life Sciences Building, 100 Pingleyuan, Beijing, 100124 China.

Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China.

出版信息

Biomed Eng Lett. 2024 May 9;14(5):1037-1048. doi: 10.1007/s13534-024-00388-x. eCollection 2024 Sep.

Abstract

In clinical practice, obstetricians use visual interpretation of fetal heart rate (FHR) to diagnose fetal conditions, but inconsistencies among interpretations can hinder accuracy. This study introduces MTU-Net3+, a deep learning model designed for automated, multi-task FHR analysis, aiming to improve diagnostic accuracy and efficiency. The proposed MTU-Net3 + was built upon the UNet3 + architecture, incorporating an encoder, a decoder, full-scale skip connections, and a deep supervision module, and further integrates a self-attention mechanism and bidirectional Long Short-Term Memory layers to enhance its performance. The MTU-Net3 + model accepts the preprocessed 20-minute FHR signals as input, outputting categorical probabilities and baseline values for each time point. The proposed MTU-Net3 + model was trained on a subset of a public database, and was tested on the remaining data of the public database and a private database. In the remaining public datasets, this model achieved F1 scores of 84.21% for deceleration (F1.Dec) and 61.33% for acceleration (F1.Acc), with a Root Mean Square Baseline Difference (RMSD.BL) of 3.46 bpm, 0% of points with an absolute difference exceeding 15 bpm(D15bpm), a Synthetic Inconsistency Coefficient (SI) of 44.82%, and a Morphological Analysis Discordance Index (MADI) of 7.00%. On the private dataset, the model recorded an RMSD.BL of 1.37 bpm, 0% D15bpm, F1.Dec of 100%, F1.Acc of 87.50%, an SI of 12.20% and a MADI of 2.79%. The MTU-Net3 + model proposed in this study performed well in automated FHR analysis, demonstrating its potential as an effective tool in the field of fetal health assessment.

摘要

在临床实践中,产科医生通过对胎儿心率(FHR)的视觉解读来诊断胎儿状况,但解读之间的不一致会影响准确性。本研究引入了MTU-Net3+,这是一种为自动化多任务FHR分析设计的深度学习模型,旨在提高诊断准确性和效率。所提出的MTU-Net3+基于UNet3+架构构建,包含一个编码器、一个解码器、全尺度跳跃连接和一个深度监督模块,并进一步集成了自注意力机制和双向长短期记忆层以提升其性能。MTU-Net3+模型接受预处理后的20分钟FHR信号作为输入,输出每个时间点的分类概率和基线值。所提出的MTU-Net3+模型在一个公共数据库的子集上进行训练,并在公共数据库的其余数据和一个私有数据库上进行测试。在其余的公共数据集中,该模型减速的F1分数(F1.Dec)为84.21%,加速的F1分数(F1.Acc)为61.33%,均方根基线差异(RMSD.BL)为3.46次/分钟,绝对差异超过15次/分钟的点数比例(D15bpm)为0%,综合不一致系数(SI)为44.82%,形态分析不一致指数(MADI)为7.00%。在私有数据集上,该模型的RMSD.BL为1.37次/分钟,D15bpm为0%,F1.Dec为100%,F1.Acc为87.50%,SI为12.20%,MADI为2.79%。本研究中提出的MTU-Net3+模型在自动化FHR分析中表现良好,证明了其作为胎儿健康评估领域有效工具的潜力。

相似文献

10
Double-sided asymmetric method for automated fetal heart rate baseline calculation.双侧非对称方法自动计算胎儿心率基线。
Phys Eng Sci Med. 2023 Dec;46(4):1779-1790. doi: 10.1007/s13246-023-01337-1. Epub 2023 Sep 28.

本文引用的文献

3
UNet++: A Nested U-Net Architecture for Medical Image Segmentation.U-Net++:一种用于医学图像分割的嵌套U-Net架构。
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018 Sep;11045:3-11. doi: 10.1007/978-3-030-00889-5_1. Epub 2018 Sep 20.
4
Fetal heart rate baseline computation with a weighted median filter.胎儿心率基线计算的加权中位数滤波器。
Comput Biol Med. 2019 Nov;114:103468. doi: 10.1016/j.compbiomed.2019.103468. Epub 2019 Sep 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验