Suppr超能文献

细胞骨架蛋白FtsZ的N端GTPase结构域在其适应高静水压过程中起关键作用。

N-terminus GTPase domain of the cytoskeleton protein FtsZ plays a critical role in its adaptation to high hydrostatic pressure.

作者信息

Cui Xue-Hua, Wei Yu-Chen, Li Xue-Gong, Qi Xiao-Qing, Wu Long-Fei, Zhang Wei-Jia

机构信息

Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.

College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.

出版信息

Front Microbiol. 2024 Aug 16;15:1441398. doi: 10.3389/fmicb.2024.1441398. eCollection 2024.

Abstract

Studies in model microorganisms showed that cell division is highly vulnerable to high hydrostatic pressure (HHP). Disassembly of FtsZ filaments induced by HHP results in the failure of cell division and formation of filamentous cells in . The specific characteristics of FtsZ that allow for functional cell division in the deep-sea environments, especially in obligate piezophiles that grow exclusively under HHP condition, remain enigmatic. In this study, by using a self-developed HHP fixation apparatus, we investigated the effect of HHP on FtsZ by examining the subcellular localization of GFP-tagged FtsZ and the stability of FtsZ filament . We compared the pressure tolerance of FtsZ proteins from pressure-sensitive strain MR-1 (FtsZ) and obligately piezophilic strain DB21MT-2 (FtsZ). Our findings showed that, unlike FtsZ, HHP hardly affected the Z-ring formation of FtsZ, and filaments composed of FtsZ were more stable after incubation under 50 MPa. By constructing chimeric and single amino acid mutated FtsZ proteins, we identified five residues in the N-terminal GTPase domain of FtsZ whose mutation would impair the Z-ring formation under HHP conditions. Overall, these results demonstrate that FtsZ from the obligately piezophilic strain exhibits superior pressure tolerance than its homologue from shallow water species, both and . Differences in pressure tolerance of FtsZ are largely attributed to the N-terminal GTPase domain. This represents the first in-depth study of the adaptation of microbial cytoskeleton protein FtsZ to high hydrostatic pressure, which may provide insights into understanding the complex bioprocess of cell division under extreme environments.

摘要

对模式微生物的研究表明,细胞分裂对高静水压(HHP)高度敏感。HHP诱导FtsZ丝解体导致细胞分裂失败并形成丝状细胞。FtsZ在深海环境中,尤其是在仅在HHP条件下生长的专性嗜压菌中实现功能性细胞分裂的具体特性仍然是个谜。在本研究中,我们使用自行开发的HHP固定装置,通过检测绿色荧光蛋白标记的FtsZ的亚细胞定位和FtsZ丝的稳定性,研究了HHP对FtsZ的影响。我们比较了压力敏感菌株MR-1(FtsZ)和专性嗜压菌株DB21MT-2(FtsZ)的FtsZ蛋白的耐压性。我们的研究结果表明,与FtsZ不同,HHP几乎不影响FtsZ的Z环形成,并且在50 MPa下孵育后,由FtsZ组成的丝更稳定。通过构建嵌合和单氨基酸突变的FtsZ蛋白,我们在FtsZ的N端GTPase结构域中鉴定出五个残基,其突变会损害HHP条件下的Z环形成。总体而言,这些结果表明,专性嗜压菌株的FtsZ比来自浅水物种的同源物表现出更高的耐压性。FtsZ耐压性的差异很大程度上归因于N端GTPase结构域。这是对微生物细胞骨架蛋白FtsZ适应高静水压的首次深入研究,可能为理解极端环境下细胞分裂的复杂生物过程提供见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/786e/11362102/932aec511633/fmicb-15-1441398-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验