Suppr超能文献

用于脑部高级磁共振波谱分析的空间光谱图像处理工作流程考量

Spatiospectral image processing workflow considerations for advanced MR spectroscopy of the brain.

作者信息

Cai Leon Y, Del Tufo Stephanie N, Barquero Laura, D'Archangel Micah, Sachs Lanier, Cutting Laurie E, Glaser Nicole, Ghetti Simona, Jaser Sarah S, Anderson Adam W, Jordan Lori C, Landman Bennett A

机构信息

Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.

School of Medicine, Vanderbilt University, Nashville, TN, USA.

出版信息

Proc SPIE Int Soc Opt Eng. 2024 Feb;12926. doi: 10.1117/12.3005391. Epub 2024 Apr 2.

Abstract

Magnetic resonance spectroscopy (MRS) is one of the few non-invasive imaging modalities capable of making neurochemical and metabolic measurements . Traditionally, the clinical utility of MRS has been narrow. The most common use has been the "single-voxel spectroscopy" variant to discern the presence of a lactate peak in the spectra in one location in the brain, typically to evaluate for ischemia in neonates. Thus, the reduction of rich spectral data to a binary variable has not classically necessitated much signal processing. However, scanners have become more powerful and MRS sequences more advanced, increasing data complexity and adding 2 to 3 spatial dimensions in addition to the spectral one. The result is a spatially- and spectrally-variant MRS image ripe for image processing innovation. Despite this potential, the logistics for robustly accessing and manipulating MRS data across different scanners, data formats, and software standards remain unclear. Thus, as research into MRS advances, there is a clear need to better characterize its image processing considerations to facilitate innovation from scientists and engineers. Building on established neuroimaging standards, we describe a framework for manipulating these images that generalizes to the voxel, spectral, and metabolite level across space and multiple imaging sites while integrating with LCModel, a widely used quantitative MRS peak-fitting platform. In doing so, we provide examples to demonstrate the advantages of such a workflow in relation to recent publications and with new data. Overall, we hope our characterizations will lower the barrier of entry to MRS processing for neuroimaging researchers.

摘要

磁共振波谱学(MRS)是少数能够进行神经化学和代谢测量的非侵入性成像方式之一。传统上,MRS的临床应用范围较窄。最常见的用途是“单体素波谱学”变体,用于辨别大脑中一个位置的波谱中是否存在乳酸峰,通常用于评估新生儿的缺血情况。因此,将丰富的波谱数据简化为二元变量,传统上并不需要太多的信号处理。然而,扫描仪变得更强大,MRS序列也更先进,这增加了数据的复杂性,除了波谱维度外,还增加了2到3个空间维度。结果是产生了一个空间和波谱都可变的MRS图像,非常适合进行图像处理创新。尽管有这种潜力,但在不同的扫描仪、数据格式和软件标准之间可靠地访问和处理MRS数据的后勤工作仍不明确。因此,随着对MRS研究的推进,显然需要更好地描述其图像处理方面的考虑因素,以促进科学家和工程师的创新。基于已建立的神经成像标准,我们描述了一个用于处理这些图像的框架,该框架可以推广到跨空间和多个成像部位的体素、波谱和代谢物水平,同时与广泛使用的定量MRS峰拟合平台LCModel集成。在此过程中,我们提供了一些例子,以证明这种工作流程相对于最近的出版物和新数据的优势。总体而言,我们希望我们的描述能够降低神经成像研究人员进入MRS处理领域的门槛。

相似文献

10
Incentives for preventing smoking in children and adolescents.预防儿童和青少年吸烟的激励措施。
Cochrane Database Syst Rev. 2012 Oct 17;10:CD008645. doi: 10.1002/14651858.CD008645.pub2.

本文引用的文献

2
NIfTI-MRS: A standard data format for magnetic resonance spectroscopy.NIfTI-MRS:磁共振波谱的标准数据格式。
Magn Reson Med. 2022 Dec;88(6):2358-2370. doi: 10.1002/mrm.29418. Epub 2022 Sep 11.
6
SciPy 1.0: fundamental algorithms for scientific computing in Python.SciPy 1.0:Python 中的科学计算基础算法。
Nat Methods. 2020 Mar;17(3):261-272. doi: 10.1038/s41592-019-0686-2. Epub 2020 Feb 3.
7
3D whole brain segmentation using spatially localized atlas network tiles.使用空间局部化图谱网络瓦片进行 3D 全脑分割。
Neuroimage. 2019 Jul 1;194:105-119. doi: 10.1016/j.neuroimage.2019.03.041. Epub 2019 Mar 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验