Yu Xin, Tang Yucheng, Yang Qi, Lee Ho Hin, Bao Shunxing, Huo Yuankai, Landman Bennett A
Computer Science, Vanderbilt University, Nashville, TN, USA.
Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA.
Proc SPIE Int Soc Opt Eng. 2024 Feb;12930. doi: 10.1117/12.3009084. Epub 2024 Apr 2.
Whole brain segmentation with magnetic resonance imaging (MRI) enables the non-invasive measurement of brain regions, including total intracranial volume (TICV) and posterior fossa volume (PFV). Enhancing the existing whole brain segmentation methodology to incorporate intracranial measurements offers a heightened level of comprehensiveness in the analysis of brain structures. Despite its potential, the task of generalizing deep learning techniques for intracranial measurements faces data availability constraints due to limited manually annotated atlases encompassing whole brain and TICV/PFV labels. In this paper, we enhancing the hierarchical transformer UNesT for whole brain segmentation to achieve segmenting whole brain with 133 classes and TICV/PFV simultaneously. To address the problem of data scarcity, the model is first pretrained on 4859 T1-weighted (T1w) 3D volumes sourced from 8 different sites. These volumes are processed through a multi-atlas segmentation pipeline for label generation, while TICV/PFV labels are unavailable. Subsequently, the model is finetuned with 45 T1w 3D volumes from Open Access Series Imaging Studies (OASIS) where both 133 whole brain classes and TICV/PFV labels are available. We evaluate our method with Dice similarity coefficients(DSC). We show that our model is able to conduct precise TICV/PFV estimation while maintaining the 132 brain regions performance at a comparable level. Code and trained model are available at: https://github.com/MASILab/UNesT/wholebrainSeg.
利用磁共振成像(MRI)进行全脑分割能够对脑区进行非侵入性测量,包括总颅内体积(TICV)和后颅窝体积(PFV)。改进现有的全脑分割方法以纳入颅内测量,可在脑结构分析中提供更高水平的全面性。尽管具有潜力,但由于包含全脑和TICV/PFV标签的手动标注图谱有限,将深度学习技术推广用于颅内测量的任务面临数据可用性限制。在本文中,我们改进了用于全脑分割的分层变压器UNesT,以实现同时对具有133个类别的全脑以及TICV/PFV进行分割。为了解决数据稀缺问题,该模型首先在来自8个不同站点的4859个T1加权(T1w)3D体积上进行预训练。这些体积通过多图谱分割管道进行处理以生成标签,而此时TICV/PFV标签不可用。随后,该模型使用来自开放获取系列成像研究(OASIS)的45个T1w 3D体积进行微调,这些体积同时具有133个全脑类别和TICV/PFV标签。我们使用骰子相似系数(DSC)评估我们的方法。我们表明,我们的模型能够进行精确的TICV/PFV估计,同时将132个脑区的性能保持在可比水平。代码和训练好的模型可在以下网址获取:https://github.com/MASILab/UNesT/wholebrainSeg 。