Suppr超能文献

一种用于检测皮革织物缺陷的多尺度注意力机制。

A multi-scale attention mechanism for detecting defects in leather fabrics.

作者信息

Li Hao, Liu Yifan, Xu Huawei, Yang Ke, Kang Zhen, Huang Mengzhen, Ou Xiao, Zhao Yuchen, Xing Tongzhen

机构信息

School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan, 430048, China.

Hexin Kuraray Micro Fiber Leather (Jiaxing) Co., Ltd., Jiaxing, 314003, China.

出版信息

Heliyon. 2024 Aug 8;10(16):e35957. doi: 10.1016/j.heliyon.2024.e35957. eCollection 2024 Aug 30.

Abstract

Defect detection is critical to industrial quality control in leather production engineering. The various sizes and locations of defects in leather, as well as significant differences within the same class and indistinctive variations between different classes of defects, contribute to the complexity of the problem. To address this challenge, we propose a Multi-Layer Residual Convolutional Attention (MLRCA) approach. MLRCA enhances its ability to capture both intra-class and inter-class differences by enhancing the semantic feature representation in the backbone network. To improve multiscale fusion effects, we also incorporate the MLRCA module into the feature pyramid network (FPN) and propose a new multi-layer residual convolution attention feature pyramid network (ML-FPN). This approach enables more accurate identification of leather defects at a more detailed level by selectively capturing contextual information from different domains. We then implement the Side-Aware Boundary Localization (SABL) detection head, which accurately locates defects and helps the network distinguish between similar defect categories for more precise positioning. To validate the effectiveness of our approach, we conducted ablation experiments on the created leather dataset. Comparative experiments demonstrate the excellent capability of our model to detect minor defects. The model achieved 83.4, 89.7, and 85.6 for the AP, AP, and AP evaluation metrics. In addition, the model achieves 71.3, 89.9, and 88.9 for AP, AP, and AP. Our approach has been confirmed feasible through experimentation and provides new insights for automated leather defect detection methods.

摘要

缺陷检测对于皮革生产工程中的工业质量控制至关重要。皮革中缺陷的各种尺寸和位置,以及同一类别内的显著差异和不同类别缺陷之间的不明显变化,导致了问题的复杂性。为应对这一挑战,我们提出了一种多层残差卷积注意力(MLRCA)方法。MLRCA通过增强主干网络中的语义特征表示来提高其捕捉类内和类间差异的能力。为了改善多尺度融合效果,我们还将MLRCA模块纳入特征金字塔网络(FPN),并提出了一种新的多层残差卷积注意力特征金字塔网络(ML-FPN)。这种方法通过有选择地捕捉来自不同领域的上下文信息,能够在更详细的层面上更准确地识别皮革缺陷。然后,我们实现了边感知边界定位(SABL)检测头,它能准确地定位缺陷,并帮助网络区分相似的缺陷类别以进行更精确的定位。为了验证我们方法的有效性,我们在创建的皮革数据集上进行了消融实验。对比实验证明了我们模型检测微小缺陷的卓越能力。该模型在AP、AP和AP评估指标上分别达到了83.4、89.7和85.6。此外,该模型在AP、AP和AP上分别达到了71.3、89.9和88.9。我们的方法已通过实验证实可行,并为自动化皮革缺陷检测方法提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0310/11365426/c05209373247/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验