IEEE Trans Cybern. 2023 Apr;53(4):2346-2357. doi: 10.1109/TCYB.2021.3117705. Epub 2023 Mar 16.
Understanding the private car aggregation effect is conducive to a broad range of applications, from intelligent transportation management to urban planning. However, this work is challenging, especially on weekends, due to the inefficient representations of spatiotemporal features for such aggregation effect and the considerable randomness of private car mobility on weekends. In this article, we propose a deep learning framework for a spatiotemporal attention network (STANet) with a neural algorithm logic unit (NALU), the so-called STANet-NALU, to understand the dynamic aggregation effect of private cars on weekends. Specifically: 1) we design an improved kernel density estimator (KDE) by defining a log-cosh loss function to calculate the spatial distribution of the aggregation effect with guaranteed robustness and 2) we utilize the stay time of private cars as a temporal feature to represent the nonlinear temporal correlation of the aggregation effect. Next, we propose a spatiotemporal attention module that separately captures the dynamic spatial correlation and nonlinear temporal correlation of the private car aggregation effect, and then we design a gate control unit to fuse spatiotemporal features adaptively. Further, we establish the STANet-NALU structure, which provides the model with numerical extrapolation ability to generate promising prediction results of the private car aggregation effect on weekends. We conduct extensive experiments based on real-world private car trajectories data. The results reveal that the proposed STANet-NALU outperforms the well-known existing methods in terms of various metrics, including the mean absolute error (MAE), root mean square error (RMSE), Kullback-Leibler divergence (KL), and R2.
理解私家车聚集效应有利于广泛的应用,从智能交通管理到城市规划。然而,这项工作具有挑战性,特别是在周末,因为这种聚集效应的时空特征表示效率低下,周末私家车的移动具有相当大的随机性。在本文中,我们提出了一种基于时空注意力网络(STANet)的深度学习框架,该框架使用神经算法逻辑单元(NALU),即所谓的 STANet-NALU,来理解周末私家车的动态聚集效应。具体来说:1)我们通过定义对数双曲余弦损失函数来设计改进的核密度估计器(KDE),以计算聚集效应的空间分布,保证了稳健性;2)我们利用私家车的停留时间作为时间特征,以表示聚集效应的非线性时间相关性。接下来,我们提出了一个时空注意力模块,分别捕获私家车聚集效应的动态空间相关性和非线性时间相关性,然后设计一个门控控制单元自适应地融合时空特征。此外,我们建立了 STANet-NALU 结构,为模型提供了数值外推能力,以生成周末私家车聚集效应的有前途的预测结果。我们基于真实的私家车轨迹数据进行了广泛的实验。结果表明,所提出的 STANet-NALU 在各种指标上都优于著名的现有方法,包括平均绝对误差(MAE)、均方根误差(RMSE)、凯莱-勒布勒散度(KL)和 R2。