Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany;
Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany.
Proc Natl Acad Sci U S A. 2021 Dec 14;118(50). doi: 10.1073/pnas.2102157118.
Choosing among spatially distributed options is a central challenge for animals, from deciding among alternative potential food sources or refuges to choosing with whom to associate. Using an integrated theoretical and experimental approach (employing immersive virtual reality), we consider the interplay between movement and vectorial integration during decision-making regarding two, or more, options in space. In computational models of this process, we reveal the occurrence of spontaneous and abrupt "critical" transitions (associated with specific geometrical relationships) whereby organisms spontaneously switch from averaging vectorial information among, to suddenly excluding one among, the remaining options. This bifurcation process repeats until only one option-the one ultimately selected-remains. Thus, we predict that the brain repeatedly breaks multichoice decisions into a series of binary decisions in space-time. Experiments with fruit flies, desert locusts, and larval zebrafish reveal that they exhibit these same bifurcations, demonstrating that across taxa and ecological contexts, there exist fundamental geometric principles that are essential to explain how, and why, animals move the way they do.
在空间分布的选项中进行选择是动物面临的一个核心挑战,无论是在不同的潜在食物源或避难所之间进行选择,还是在选择与谁交往。我们采用一种综合的理论和实验方法(使用沉浸式虚拟现实),考虑了在考虑两个或更多空间选项时,运动和向量整合之间的相互作用。在这个过程的计算模型中,我们揭示了自发和突然的“临界”转变的发生(与特定的几何关系有关),即生物体突然从在多个选项之间平均化向量信息,转变为突然排除剩余选项中的一个。这个分岔过程会重复,直到只剩下一个选项——最终被选择的那个。因此,我们预测大脑会反复将多选项决策在时空上分解为一系列二进制决策。利用果蝇、沙漠蝗和斑马鱼幼虫的实验表明,它们表现出相同的分岔,这表明在不同的分类群和生态环境中,存在着基本的几何原理,这些原理对于解释动物如何以及为什么以它们的方式移动至关重要。