Suppr超能文献

超越 2D 细胞培养:3D 模型如何改变卵巢癌的研究以及如何充分利用它们。

Beyond 2D cell cultures: how 3D models are changing the study of ovarian cancer and how to make the most of them.

机构信息

School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia.

Department of Electrical Electronic and Information Engineering "G. Marconi", University of Bologna, Cesena, Italy.

出版信息

PeerJ. 2024 Aug 29;12:e17603. doi: 10.7717/peerj.17603. eCollection 2024.

Abstract

3D cell cultures are a fundamental tool in ovarian cancer research that can enable more effective study of the main features of this lethal disease, including the high rates of recurrence and chemoresistance. A clearer, more comprehensive understanding of the biological underpinnings of these phenomena could aid the development of more effective treatments thus improving patient outcomes. Selecting the most appropriate model to investigate the different aspects of cell biology that are relevant to cancer is challenging, especially since the assays available for the study of 3D cultures are not fully established yet. To maximise the usefulness of 3D cell cultures of ovarian cancer, we undertook an in-depth review of the currently available models, taking into consideration the strengths and limitations of each approach and of the assay techniques used to evaluate the results. This integrated analysis provides insight into which model-assay pair is best suited to study different parameters of ovarian cancer biology such as cell proliferation, gene expression or treatment response. We also describe how the combined use of multiple models is likely to be the most effective strategy for the characterisation of complex behaviours.

摘要

3D 细胞培养是卵巢癌研究中的一项基本工具,它可以更有效地研究这种致命疾病的主要特征,包括高复发率和化疗耐药性。更清楚、更全面地了解这些现象的生物学基础可能有助于开发更有效的治疗方法,从而改善患者的预后。选择最合适的模型来研究与癌症相关的不同细胞生物学方面是具有挑战性的,特别是因为目前用于 3D 培养物研究的检测方法尚未完全建立。为了最大限度地提高卵巢癌细胞 3D 培养物的有用性,我们深入回顾了目前可用的模型,考虑了每种方法的优缺点以及用于评估结果的检测技术。这种综合分析深入了解了哪种模型-检测组合最适合研究卵巢癌生物学的不同参数,如细胞增殖、基因表达或治疗反应。我们还描述了如何结合使用多种模型最有可能成为描述复杂行为的最有效策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4749/11366228/bf2d7556a3e9/peerj-12-17603-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验