Lee Yujin, Min Jaehong, Kim Solbin, Park Wooju, Ko Jihoon, Jeon Noo Li
Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.
Department of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
Adv Healthc Mater. 2025 Jan;14(1):e2401927. doi: 10.1002/adhm.202401927. Epub 2024 Sep 2.
The cancer-immunity cycle is a fundamental framework for understanding how the immune system interacts with cancer cells, balancing T cell recognition and elimination of tumors while avoiding autoimmune reactions. Despite advancements in immunotherapy, there remains a critical need to dissect each phase of the cycle, particularly the interactions among the tumor, vasculature, and immune system within the tumor microenvironment (TME). Innovative platforms such as organ-on-a-chip, organoids, and bioprinting within microphysiological systems (MPS) are increasingly utilized to enhance the understanding of these interactions. These systems meticulously replicate crucial aspects of the TME and immune responses, providing robust platforms to study cancer progression, immune evasion, and therapeutic interventions with greater physiological relevance. This review explores the latest advancements in MPS technologies for modeling various stages of the cancer-immune cycle, critically evaluating their applications and limitations in advancing the understanding of cancer-immune dynamics and guiding the development of next-generation immunotherapeutic strategies.
癌症免疫循环是理解免疫系统如何与癌细胞相互作用的基本框架,它在平衡T细胞对肿瘤的识别和清除的同时避免自身免疫反应。尽管免疫疗法取得了进展,但仍迫切需要剖析该循环的每个阶段,特别是肿瘤微环境(TME)中肿瘤、脉管系统和免疫系统之间的相互作用。诸如芯片器官、类器官和微生理系统(MPS)中的生物打印等创新平台正越来越多地被用于增进对这些相互作用的理解。这些系统精心复制了TME和免疫反应的关键方面,为研究癌症进展、免疫逃逸和具有更高生理相关性的治疗干预提供了强大的平台。本综述探讨了用于模拟癌症免疫循环各个阶段的MPS技术的最新进展,批判性地评估了它们在推进对癌症免疫动力学的理解以及指导下一代免疫治疗策略开发方面的应用和局限性。