Li Zaiqi, Sun Bin, Xiao Difei, Liu Hongli, Wang Zeyan, Liu Yuanyuan, Zheng Zhaoke, Wang Peng, Dai Ying, Huang Baibiao, Cheng Hefeng
State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, 250100, Jinan, China.
School of Physics, Shandong University, 250100, Jinan, China.
Angew Chem Int Ed Engl. 2025 Jan 2;64(1):e202413832. doi: 10.1002/anie.202413832. Epub 2024 Oct 25.
The multi-carbon (C) alcohols produced by electrochemical CO reduction, such as ethanol and n-propanol, are considered as indispensable liquid energy carriers. In most C-C coupling cases, however, the concomitant gaseous CH product results in the low selectivity of C alcohols. Here, we report rational construction of mesostructured CuO electrocatalysts, specifically mesoporous CuO (m-CuO) and cylindrical CuO (c-CuO), enables selective distribution of C products. The m-CuO and c-CuO show similar selectivity towards total C products (≥76 %), but the corresponding predominant products are C alcohols (55 %) and CH (52 %), respectively. The ordered mesostructure not only induces the surface hydrophobicity, but selectively tailors the adsorption configuration of *CO intermediate: m-CuO prefers bridged adsorption, whereas c-CuO favors top adsorption as revealed by in situ spectroscopies. Computational calculations unravel that bridged *CO adsorbate is prone to deep protonation into *OCH intermediate, thus accelerating the coupling of *CO and *OCH intermediates to generate C alcohols; by contrast, top *CO adsorbate is apt to undergo conventional C-C coupling process to produce CH. This work illustrates selective C products distribution via mesostructure manipulation, and paves a new path into the design of efficient electrocatalysts with tunable adsorption configuration of key intermediates for targeted products.
通过电化学CO还原产生的多碳(C)醇,如乙醇和正丙醇,被视为不可或缺的液体能源载体。然而,在大多数C-C偶联情况下,伴随产生的气态CH产物导致C醇的选择性较低。在此,我们报道了介孔结构CuO电催化剂的合理构建,特别是介孔CuO(m-CuO)和柱状CuO(c-CuO),能够实现C产物的选择性分布。m-CuO和c-CuO对总C产物(≥76%)表现出相似的选择性,但相应的主要产物分别是C醇(55%)和CH(52%)。有序的介孔结构不仅诱导了表面疏水性,还选择性地调整了CO中间体的吸附构型:原位光谱表明,m-CuO倾向于桥式吸附,而c-CuO有利于顶式吸附。计算计算表明,桥式CO吸附物易于深度质子化形成OCH中间体,从而加速CO和OCH中间体的偶联以生成C醇;相比之下,顶式CO吸附物易于经历传统的C-C偶联过程以产生CH。这项工作阐明了通过介孔结构调控实现C产物的选择性分布,并为设计具有针对目标产物的关键中间体可调吸附构型的高效电催化剂开辟了一条新途径。