Stravs Michael A
Eawag, Ueberlandstrasse 133, CH-8600 Dübendorf.
Chimia (Aarau). 2024 Aug 21;78(7-8):525-530. doi: 10.2533/chimia.2024.525.
Computational methods are playing an increasingly important role as a complement to conventional data evaluation methods in analytical chemistry, and particularly mass spectrometry. Computational mass spectrometry (CompMS) is the application of computational methods on mass spectrometry data. Herein, advances in CompMS for small molecule chemistry are discussed in the areas of spectral libraries, spectrum prediction, and tentative structure identification (annotation): Automatic spectrum curation is facilitating the expansion of openly available spectral libraries, a crucial resource both for compound annotation directly and as a resource for machine learning algorithms. Spectrum prediction and molecular fingerprint prediction have emerged as two key approaches to compound annotation. For both, multiple methods based on classical machine learning and deep learning have been developed. Driven by advances in deep learning-based generative chemistry, de novo structure generation from fragment spectra is emerging as a new field of research. This review highlights key publications in these fields, including our approaches RMassBank (automatic spectrum curation) and MSNovelist (de novo structure generation).
在分析化学,尤其是质谱分析中,计算方法作为传统数据评估方法的补充正发挥着越来越重要的作用。计算质谱(CompMS)是将计算方法应用于质谱数据。本文讨论了小分子化学领域中计算质谱在光谱库、光谱预测和暂定结构鉴定(注释)方面的进展:自动光谱整理有助于扩大公开可用的光谱库,这是直接用于化合物注释以及作为机器学习算法资源的关键资源。光谱预测和分子指纹预测已成为化合物注释的两种关键方法。针对这两种方法,都开发了基于经典机器学习和深度学习的多种方法。在基于深度学习的生成化学进展的推动下,从碎片光谱进行从头结构生成正成为一个新的研究领域。本综述重点介绍了这些领域的关键出版物,包括我们的方法RMassBank(自动光谱整理)和MSNovelist(从头结构生成)。