Suppr超能文献

利用心电图图像的人工智能增强癌症治疗相关心脏功能障碍的风险分层

Artificial Intelligence-Enhanced Risk Stratification of Cancer Therapeutics-Related Cardiac Dysfunction Using Electrocardiographic Images.

作者信息

Oikonomou Evangelos K, Sangha Veer, Dhingra Lovedeep S, Aminorroaya Arya, Coppi Andreas, Krumholz Harlan M, Baldassarre Lauren A, Khera Rohan

机构信息

Section of Cardiovascular Medicine, Department of Internal Medicine (E.K.O., V.S., L.S.D., A.A., H.M.K., L.A.B., R.K.), Yale School of Medicine, New Haven, CT.

Department of Engineering Science, University of Oxford, United Kingdom (V.S.).

出版信息

Circ Cardiovasc Qual Outcomes. 2025 Jan;18(1):e011504. doi: 10.1161/CIRCOUTCOMES.124.011504. Epub 2024 Sep 2.

Abstract

BACKGROUND

Risk stratification strategies for cancer therapeutics-related cardiac dysfunction (CTRCD) rely on serial monitoring by specialized imaging, limiting their scalability. We aimed to examine an application of artificial intelligence (AI) to ECG images as a surrogate for imaging risk biomarkers and its association with early CTRCD.

METHODS

Across a US-based health system (2013-2023), we identified 1550 patients (aged, 60 [interquartile range, 51-69] years, 1223 [78.9%] women) without cardiomyopathy who received anthracyclines or trastuzumab for breast cancer or non-Hodgkin lymphoma and had ECG performed ≤12 months before treatment. We deployed a validated AI model of left ventricular systolic dysfunction to baseline ECG images and defined low-, intermediate-, and high-risk groups based on AI-ECG left ventricular systolic dysfunction probabilities of <0.01, 0.01 to 0.1, and ≥0.1 (positive screen), respectively. We explored the association with early CTRCD (new cardiomyopathy, heart failure, or left ventricular ejection fraction <50%), or left ventricular ejection fraction <40%, up to 12 months after treatment. In a mechanistic analysis, we assessed the association between global longitudinal strain and AI-ECG left ventricular systolic dysfunction probabilities in studies performed within 15 days of each other.

RESULTS

Among 1550 patients without known cardiomyopathy (median follow-up, 14.1 [interquartile range, 13.4-17.1] months), 83 (5.4%), 562 (36.3%), and 905 (58.4%) were classified as high, intermediate, and low risk, respectively, by baseline AI-ECG. A high-risk versus low-risk AI-ECG screen (≥0.1 versus <0.01) was associated with a 3.4-fold and 13.5-fold higher incidence of CTRCD (adjusted hazard ratio, 3.35 [95% CI, 2.25-4.99]) and left ventricular ejection fraction <40% (adjusted hazard ratio, 13.52 [95% CI, 5.06-36.10]), respectively. Post hoc analyses supported longitudinal increases in AI-ECG probabilities within 6 to 12 months of a CTRCD event. Among 1428 temporally linked echocardiograms and ECGs, AI-ECG left ventricular systolic dysfunction probabilities were associated with worse global longitudinal strain (global longitudinal strain, -19% [interquartile range, -21% to -17%] for probabilities <0.1, to -15% [interquartile range, -15% to -9%] for ≥0.5 [<0.001]).

CONCLUSIONS

AI applied to baseline ECG images can stratify the risk of early CTRCD associated with anthracycline or trastuzumab exposure in the setting of breast cancer and non-Hodgkin lymphoma therapy.

摘要

背景

癌症治疗相关心脏功能障碍(CTRCD)的风险分层策略依赖于通过专业成像进行连续监测,这限制了它们的可扩展性。我们旨在研究人工智能(AI)在心电图图像中的应用,以此作为成像风险生物标志物的替代指标,并探讨其与早期CTRCD的关联。

方法

在美国的一个医疗系统(2013 - 2023年)中,我们确定了1550例无心肌病的患者(年龄60岁[四分位间距,51 - 69岁],1223例[78.9%]为女性),这些患者因乳腺癌或非霍奇金淋巴瘤接受了蒽环类药物或曲妥珠单抗治疗,且在治疗前≤12个月进行了心电图检查。我们将经过验证的左心室收缩功能障碍AI模型应用于基线心电图图像,并根据AI - ECG左心室收缩功能障碍概率分别<0.01、0.01至0.1和≥0.1(阳性筛查)定义低、中、高风险组。我们探讨了其与治疗后长达12个月的早期CTRCD(新发心肌病、心力衰竭或左心室射血分数<50%)或左心室射血分数<40%的关联。在一项机制分析中,我们评估了在彼此间隔15天内进行的研究中,整体纵向应变与AI - ECG左心室收缩功能障碍概率之间的关联。

结果

在1550例无已知心肌病的患者中(中位随访时间,14.1[四分位间距,13.4 - 17.1]个月),根据基线AI - ECG,分别有83例(5.4%)、562例(36.3%)和905例(58.4%)被分类为高、中、低风险。高风险与低风险AI - ECG筛查(≥0.1对<0.01)分别与CTRCD发生率高3.4倍和13.5倍(调整后风险比,3.35[95%CI,2.25 - 4.99])以及左心室射血分数<40%(调整后风险比,13.52[95%CI,5.06 - 36.10])相关。事后分析支持在CTRCD事件发生后的6至12个月内AI - ECG概率的纵向增加。在1428例时间上相关的超声心动图和心电图中,AI - ECG左心室收缩功能障碍概率与较差的整体纵向应变相关(整体纵向应变,概率<0.1时为-19%[四分位间距,-21%至-17%],≥0.5时为-15%[四分位间距,-15%至-9%][<0.001])。

结论

应用于基线心电图图像的AI可以对乳腺癌和非霍奇金淋巴瘤治疗中与蒽环类药物或曲妥珠单抗暴露相关的早期CTRCD风险进行分层。

相似文献

1
Artificial Intelligence-Enhanced Risk Stratification of Cancer Therapeutics-Related Cardiac Dysfunction Using Electrocardiographic Images.
Circ Cardiovasc Qual Outcomes. 2025 Jan;18(1):e011504. doi: 10.1161/CIRCOUTCOMES.124.011504. Epub 2024 Sep 2.
4
Phenotypes of Myocardial Dysfunction on Serial Echocardiography and CMR in Women With Early-Stage Breast Cancer.
JACC Cardiovasc Imaging. 2025 May;18(5):540-553. doi: 10.1016/j.jcmg.2024.12.010. Epub 2025 Mar 19.
6
Changes in Cardiovascular Biomarkers With Breast Cancer Therapy and Associations With Cardiac Dysfunction.
J Am Heart Assoc. 2020 Jan 21;9(2):e014708. doi: 10.1161/JAHA.119.014708.
8
Role of Early Left Atrial Functional Decline in Predicting Cardiotoxicity in HER2 Positive Breast Cancer Patients Treated With Trastuzumab.
Cardiovasc Toxicol. 2024 Jun;24(6):550-562. doi: 10.1007/s12012-024-09861-6. Epub 2024 May 2.
10
Single Versus Standard Multiview Assessment of Global Longitudinal Strain for the Diagnosis of Cardiotoxicity During Cancer Therapy.
JACC Cardiovasc Imaging. 2018 Aug;11(8):1109-1118. doi: 10.1016/j.jcmg.2018.03.003. Epub 2018 May 16.

引用本文的文献

1
Predicting Tolerance to Anthracycline Chemotherapy Using Electrocardiogram-Based Artificial Intelligence in Sarcoma.
Mayo Clin Proc Digit Health. 2025 Jul 4;3(3):100247. doi: 10.1016/j.mcpdig.2025.100247. eCollection 2025 Sep.
2
Identification of hypertrophic cardiomyopathy on electrocardiographic images with deep learning.
Nat Cardiovasc Res. 2025 Jul 22. doi: 10.1038/s44161-025-00685-3.
3
The emerging role of AI in transforming cardiovascular care.
Future Cardiol. 2025 Jun;21(8):547-550. doi: 10.1080/14796678.2025.2492973. Epub 2025 Apr 18.
5
Applications, challenges and future directions of artificial intelligence in cardio-oncology.
Eur J Clin Invest. 2025 Apr;55 Suppl 1(Suppl 1):e14370. doi: 10.1111/eci.14370.
6
AI and Smart Devices in Cardio-Oncology: Advancements in Cardiotoxicity Prediction and Cardiovascular Monitoring.
Diagnostics (Basel). 2025 Mar 20;15(6):787. doi: 10.3390/diagnostics15060787.
7
Cancer-Therapy-Related Cardiac Dysfunction: Latest Advances in Prevention and Treatment.
Life (Basel). 2025 Mar 15;15(3):471. doi: 10.3390/life15030471.
8
Ensemble Deep Learning Algorithm for Structural Heart Disease Screening Using Electrocardiographic Images: PRESENT SHD.
J Am Coll Cardiol. 2025 Apr 1;85(12):1302-1313. doi: 10.1016/j.jacc.2025.01.030.
10
Artificial Intelligence to Enhance Precision Medicine in Cardio-Oncology: A Scientific Statement From the American Heart Association.
Circ Genom Precis Med. 2025 Apr;18(2):e000097. doi: 10.1161/HCG.0000000000000097. Epub 2025 Feb 24.

本文引用的文献

6
New AI Tools Must Have Health Equity in Their DNA.
JAMA. 2023 Nov 7;330(17):1604-1607. doi: 10.1001/jama.2023.19293.
8
Detection of Left Ventricular Systolic Dysfunction From Electrocardiographic Images.
Circulation. 2023 Aug 29;148(9):765-777. doi: 10.1161/CIRCULATIONAHA.122.062646. Epub 2023 Jul 25.
9
Cardioprotection in Patients at High Risk of Anthracycline-Induced Cardiotoxicity: Primer.
JACC CardioOncol. 2023 Jun 20;5(3):292-297. doi: 10.1016/j.jaccao.2023.05.004. eCollection 2023 Jun.
10
Worldwide variation in cardiovascular magnetic resonance practice models.
J Cardiovasc Magn Reson. 2023 Jul 3;25(1):38. doi: 10.1186/s12968-023-00948-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验