Sangha Veer, Dhingra Lovedeep Singh, Aminorroaya Arya, Croon Philip M, Sikand Nikhil V, Sen Sounok, Martinez Matthew W, Maron Martin S, Krumholz Harlan M, Asselbergs Folkert W, Oikonomou Evangelos K, Khera Rohan
Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
Department of Engineering Science, Oxford University, Oxford, UK.
Nat Cardiovasc Res. 2025 Jul 22. doi: 10.1038/s44161-025-00685-3.
Hypertrophic cardiomyopathy (HCM) is frequently underdiagnosed. Although deep learning (DL) models using raw electrocardiographic (ECG) voltage data can enhance detection, their use at the point of care is limited. Here we report the development and validation of a DL model that detects HCM from images of 12-lead ECGs across layouts. The model was developed using 124,553 ECGs from 66,987 individuals at the Yale New Haven Hospital (YNHH), with HCM features determined by concurrent imaging (cardiac magnetic resonance (CMR) or echocardiography). External validation included ECG images from MIMIC-IV, the Amsterdam University Medical Center (AUMC) and the UK Biobank (UKB), where HCM was defined by CMR (YNHH, MIMIC-IV and AUMC) and diagnosis codes (UKB). The model demonstrated robust performance across image formats and sites (areas under the receiver operating characteristic curve (AUROCs): 0.95 internal testing; 0.94 MIMIC-IV; 0.92 AUMC; 0.91 UKB). Discriminative features localized to anterior/lateral leads (V4 and V5) regardless of layout. This approach enables scalable, image-based screening for HCM across clinical settings.
肥厚型心肌病(HCM)常常未得到充分诊断。尽管使用原始心电图(ECG)电压数据的深度学习(DL)模型能够提高检测率,但其在医疗现场的应用却受到限制。在此,我们报告了一种DL模型的开发与验证情况,该模型可从不同布局的12导联心电图图像中检测出HCM。该模型是利用耶鲁纽黑文医院(YNHH)66,987名个体的124,553份心电图开发而成,HCM特征由同步成像(心脏磁共振成像(CMR)或超声心动图)确定。外部验证包括来自多机构重症医学影像数据库第四版(MIMIC-IV)、阿姆斯特丹大学医学中心(AUMC)和英国生物银行(UKB)的心电图图像,其中HCM在YNHH、MIMIC-IV和AUMC中由CMR定义,在UKB中由诊断代码定义。该模型在不同图像格式和不同地点均表现出强大的性能(受试者操作特征曲线下面积(AUROC):内部测试为0.95;MIMIC-IV为0.94;AUMC为0.92;UKB为0.91)。无论布局如何,鉴别特征均定位于前壁/侧壁导联(V4和V5)。这种方法能够在各种临床环境中对HCM进行可扩展的基于图像的筛查。