Department of Computer Science (V.S., A.K.), Yale University, New Haven, CT.
Section of Cardiovascular Medicine, Department of Internal Medicine (A.A.N., L.S.D., E.J.M., E.J.V., H.M.K., R.K.), Yale University, New Haven, CT.
Circulation. 2023 Aug 29;148(9):765-777. doi: 10.1161/CIRCULATIONAHA.122.062646. Epub 2023 Jul 25.
Left ventricular (LV) systolic dysfunction is associated with a >8-fold increased risk of heart failure and a 2-fold risk of premature death. The use of ECG signals in screening for LV systolic dysfunction is limited by their availability to clinicians. We developed a novel deep learning-based approach that can use ECG images for the screening of LV systolic dysfunction.
Using 12-lead ECGs plotted in multiple different formats, and corresponding echocardiographic data recorded within 15 days from the Yale New Haven Hospital between 2015 and 2021, we developed a convolutional neural network algorithm to detect an LV ejection fraction <40%. The model was validated within clinical settings at Yale New Haven Hospital and externally on ECG images from Cedars Sinai Medical Center in Los Angeles, CA; Lake Regional Hospital in Osage Beach, MO; Memorial Hermann Southeast Hospital in Houston, TX; and Methodist Cardiology Clinic of San Antonio, TX. In addition, it was validated in the prospective Brazilian Longitudinal Study of Adult Health. Gradient-weighted class activation mapping was used to localize class-discriminating signals on ECG images.
Overall, 385 601 ECGs with paired echocardiograms were used for model development. The model demonstrated high discrimination across various ECG image formats and calibrations in internal validation (area under receiving operation characteristics [AUROCs], 0.91; area under precision-recall curve [AUPRC], 0.55); and external sets of ECG images from Cedars Sinai (AUROC, 0.90 and AUPRC, 0.53), outpatient Yale New Haven Hospital clinics (AUROC, 0.94 and AUPRC, 0.77), Lake Regional Hospital (AUROC, 0.90 and AUPRC, 0.88), Memorial Hermann Southeast Hospital (AUROC, 0.91 and AUPRC 0.88), Methodist Cardiology Clinic (AUROC, 0.90 and AUPRC, 0.74), and Brazilian Longitudinal Study of Adult Health cohort (AUROC, 0.95 and AUPRC, 0.45). An ECG suggestive of LV systolic dysfunction portended >27-fold higher odds of LV systolic dysfunction on transthoracic echocardiogram (odds ratio, 27.5 [95% CI, 22.3-33.9] in the held-out set). Class-discriminative patterns localized to the anterior and anteroseptal leads (V and V), corresponding to the left ventricle regardless of the ECG layout. A positive ECG screen in individuals with an LV ejection fraction ≥40% at the time of initial assessment was associated with a 3.9-fold increased risk of developing incident LV systolic dysfunction in the future (hazard ratio, 3.9 [95% CI, 3.3-4.7]; median follow-up, 3.2 years).
We developed and externally validated a deep learning model that identifies LV systolic dysfunction from ECG images. This approach represents an automated and accessible screening strategy for LV systolic dysfunction, particularly in low-resource settings.
左心室(LV)收缩功能障碍与心力衰竭风险增加 8 倍以上和过早死亡风险增加 2 倍相关。心电图信号在 LV 收缩功能障碍筛查中的应用受到其在临床医生中可用性的限制。我们开发了一种新的基于深度学习的方法,该方法可以使用心电图图像进行 LV 收缩功能障碍的筛查。
使用 2015 年至 2021 年在耶鲁纽黑文医院记录的 12 导联心电图以多种不同格式绘制,并在 15 天内与相应的超声心动图数据相关联,我们开发了一种卷积神经网络算法来检测 LV 射血分数<40%。该模型在耶鲁纽黑文医院的临床环境中进行了验证,并在加利福尼亚州洛杉矶雪松西奈医疗中心、密苏里州奥沙克比奇湖地区医院、德克萨斯州休斯顿纪念赫尔曼东南医院和德克萨斯州圣安东尼奥卫理公会心脏病学诊所的心电图图像上进行了外部验证。此外,它还在巴西成人健康纵向研究中进行了验证。梯度加权类激活映射用于定位心电图图像上的类判别信号。
总体而言,我们使用了 385601 份带有配对超声心动图的心电图来进行模型开发。该模型在内部验证中表现出对各种心电图图像格式和校准的高辨别能力(接收者操作特征曲线下面积 [AUROC],0.91;精度-召回曲线下面积 [AUPRC],0.55);以及雪松西奈的外部心电图图像集(AUROC,0.90 和 AUPRC,0.53)、耶鲁纽黑文医院门诊诊所(AUROC,0.94 和 AUPRC,0.77)、湖地区医院(AUROC,0.90 和 AUPRC,0.88)、纪念赫尔曼东南医院(AUROC,0.91 和 AUPRC,0.88)、卫理公会心脏病学诊所(AUROC,0.90 和 AUPRC,0.74)以及巴西成人健康纵向研究队列(AUROC,0.95 和 AUPRC,0.45)。心电图提示 LV 收缩功能障碍预示着经胸超声心动图检查 LV 收缩功能障碍的可能性高出 27 倍(在保留组中,比值比为 27.5 [95%CI,22.3-33.9])。分类判别模式定位在前侧和前间隔导联(V 和 V),与左心室对应,无论心电图布局如何。在初始评估时 LV 射血分数≥40%的个体中进行阳性心电图筛查与未来发生新发 LV 收缩功能障碍的风险增加 3.9 倍相关(风险比,3.9 [95%CI,3.3-4.7];中位随访,3.2 年)。
我们开发了一种经过外部验证的深度学习模型,可以从心电图图像中识别 LV 收缩功能障碍。这种方法代表了一种用于 LV 收缩功能障碍的自动化和易于获得的筛查策略,尤其是在资源有限的环境中。