Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; Center of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China.
Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
Acta Biomater. 2024 Nov;189:545-558. doi: 10.1016/j.actbio.2024.08.044. Epub 2024 Sep 1.
The escalating menace of antimicrobial resistance (AMR) presents a profound global threat to life and assets. However, the incapacity of metal ions/reactive oxygen species (ROS) or the indiscriminate intrinsic interaction of cationic groups to distinguish between bacteria and mammalian cells undermines the essential selectivity required in these nanomaterials for an ideal antimicrobial agent. Hence, we devised and synthesized a range of biocompatible mixed-charge hyperbranched polymer nanoparticles (MCHPNs) incorporating cationic, anionic, and neutral alkyl groups to effectively combat multidrug-resistant bacteria and mitigate AMR. This outcome stemmed from the structural, antibacterial activity, and biocompatibility analysis of seven MCHPNs, among which MCHPN7, with a ratio of cationic groups, anionic groups, and long alkyl chains at 27:59:14, emerged as the lead candidate. Importantly, owing to inherent differences in membrane potential among diverse species, alongside its nano-size (6-15 nm) and high hydrophilicity (K = 0.04), MCHPN7 exhibited exceptional selective bactericidal effects over mammalian cells (selectivity index > 564) in vitro and in vivo. By inducing physical membrane disruption, MCHPN7 effectively eradicated antibiotic-resistant bacteria and significantly delayed the emergence of bacterial resistance. Utilized as a coating, MCHPN7 endowed initially inert surfaces with the ability to impede biofilm formation and mitigate infection-related immune responses in mouse models. This research heralds the advent of biocompatible polymer nanoparticles and harbors significant implications in our ongoing combat against AMR. STATEMENT OF SIGNIFICANCE: The escalating prevalence of antimicrobial resistance (AMR) has been acknowledged as one of the most significant threats to global health. Therefore, a series of mixed-charge hyperbranched polymer nanoparticles (MCHPNs) with selective antibacterial action were designed and synthesized. Owing to inherent differences in membrane potential among diverse species and high hydrophilicity (K = 0.04), the optimal nanoparticles exhibited exceptional selective bactericidal effects over mammalian cells (selectivity index >564) and significantly delayed the emergence of bacterial resistance. Importantly, they endowed surfaces with the ability to impede biofilm formation and mitigate infection-related immune responses. Furthermore, the above findings focus on addressing the problem of AMR in Post-Pandemic, which will for sure attract attention from both academic and industry research.
抗菌药物耐药性(AMR)的威胁不断升级,对生命和财产构成了严重的全球性威胁。然而,金属离子/活性氧(ROS)的能力不足或阳离子基团的无差别固有相互作用,无法区分细菌和哺乳动物细胞,这削弱了这些纳米材料作为理想抗菌剂所需的基本选择性。因此,我们设计并合成了一系列包含阳离子、阴离子和中性烷基基团的生物相容性混合电荷超支化聚合物纳米粒子(MCHPNs),以有效对抗多药耐药细菌并减轻 AMR。这一结果源于对七种 MCHPNs 的结构、抗菌活性和生物相容性分析,其中 MCHPN7 具有 27:59:14 的阳离子基团、阴离子基团和长烷基链比例,成为首选候选物。重要的是,由于不同物种之间存在膜电位固有差异,以及其纳米尺寸(6-15nm)和高亲水性(K=0.04),MCHPN7 在体外和体内对哺乳动物细胞表现出卓越的选择性杀菌作用(选择性指数>564)。通过诱导物理膜破裂,MCHPN7 有效地根除了抗生素耐药细菌,并显著延迟了细菌耐药性的出现。用作涂层时,MCHPN7 使最初惰性的表面能够阻止生物膜形成并减轻与感染相关的免疫反应。这项研究预示着生物相容性聚合物纳米粒子的出现,并在我们对抗 AMR 的持续斗争中具有重要意义。
声明的意义:抗菌药物耐药性(AMR)的不断上升已被认为是对全球健康的最大威胁之一。因此,设计并合成了一系列具有选择性抗菌作用的混合电荷超支化聚合物纳米粒子(MCHPNs)。由于不同物种之间存在膜电位固有差异和高亲水性(K=0.04),最佳纳米粒子对哺乳动物细胞表现出卓越的选择性杀菌作用(选择性指数>564),并显著延迟了细菌耐药性的出现。重要的是,它们使表面具有阻止生物膜形成和减轻与感染相关的免疫反应的能力。此外,上述发现重点关注解决后疫情时代的 AMR 问题,这肯定会引起学术界和工业界研究的关注。