Suppr超能文献

单元素碲纳米线的室温铁电、压电和电阻开关行为

Room-temperature ferroelectric, piezoelectric and resistive switching behaviors of single-element Te nanowires.

作者信息

Zhang Jinlei, Zhang Jiayong, Qi Yaping, Gong Shuainan, Xu Hang, Liu Zhenqi, Zhang Ran, Sadi Mohammad A, Sychev Demid, Zhao Run, Yang Hongbin, Wu Zhenping, Cui Dapeng, Wang Lin, Ma Chunlan, Wu Xiaoshan, Gao Ju, Chen Yong P, Wang Xinran, Jiang Yucheng

机构信息

Key Laboratory of Inteligent Optoelectronic Devices and Chips of Jiangsu Higher Education Institutions, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, China.

Advanced Technology Research Institute of Taihu Photon Center, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, China.

出版信息

Nat Commun. 2024 Sep 2;15(1):7648. doi: 10.1038/s41467-024-52062-6.

Abstract

Ferroelectrics are essential in memory devices for multi-bit storage and high-density integration. Ferroelectricity mainly exists in compounds but rare in single-element materials due to their lack of spontaneous polarization in the latter. However, we report a room-temperature ferroelectricity in quasi-one-dimensional Te nanowires. Piezoelectric characteristics, ferroelectric loops and domain reversals are clearly observed. We attribute the ferroelectricity to the ion displacement created by the interlayer interaction between lone-pair electrons. Ferroelectric polarization can induce a strong field effect on the transport along the Te chain, giving rise to a self-gated ferroelectric field-effect transistor. By utilizing ferroelectric Te nanowire as channel, the device exhibits high mobility (~220 cm·V·s), continuous-variable resistive states can be observed with long-term retention (>10 s), fast speed (<20 ns) and high-density storage (>1.92 TB/cm). Our work provides opportunities for single-element ferroelectrics and advances practical applications such as ultrahigh-density data storage and computing-in-memory devices.

摘要

铁电体对于用于多位存储和高密度集成的存储器件至关重要。铁电性主要存在于化合物中,但在单元素材料中很少见,因为后者缺乏自发极化。然而,我们报道了准一维碲纳米线中的室温铁电性。清晰地观察到了压电特性、铁电回线和畴反转。我们将铁电性归因于孤对电子之间层间相互作用产生的离子位移。铁电极化可以对沿碲链的输运产生强场效应,从而产生自栅铁电场效应晶体管。通过将铁电碲纳米线用作沟道,该器件表现出高迁移率(~220 cm·V·s),可以观察到连续可变的电阻状态,具有长期保持能力(>10 s)、快速速度(<20 ns)和高密度存储(>1.92 TB/cm)。我们的工作为单元素铁电体提供了机会,并推动了诸如超高密度数据存储和内存计算设备等实际应用的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa12/11368953/3af281d60489/41467_2024_52062_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验