Baek Sungpyo, Yoo Hyun Ho, Ju Jae Hyeok, Sriboriboon Panithan, Singh Prashant, Niu Jingjie, Park Jin-Hong, Shin Changhwan, Kim Yunseok, Lee Sungjoo
SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 440-746, Korea.
School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 440-746, Korea.
Adv Sci (Weinh). 2022 Jul;9(21):e2200566. doi: 10.1002/advs.202200566. Epub 2022 May 15.
To address the demands of emerging data-centric computing applications, ferroelectric field-effect transistors (Fe-FETs) are considered the forefront of semiconductor electronics owing to their energy and area efficiency and merged logic-memory functionalities. Herein, the fabrication and application of an Fe-FET, which is integrated with a van der Waals ferroelectrics heterostructure (CuInP S /α-In Se ), is reported. Leveraging enhanced polarization originating from the dipole coupling of CIPS and α-In Se , the fabricated Fe-FET exhibits a large memory window of 14.5 V at V = ±10 V, reaching a memory window to sweep range of ≈72%. Piezoelectric force microscopy measurements confirm the enhanced polarization-induced wider hysteresis loop of the double-stacked ferroelectrics compared to single ferroelectric layers. The Landau-Khalatnikov theory is extended to analyze the ferroelectric characteristics of a ferroelectric heterostructure, providing detailed explanations of the hysteresis behaviors and enhanced memory window formation. The fabricated Fe-FET shows nonvolatile memory characteristics, with a high on/off current ratio of over 10 , long retention time (>10 s), and stable cyclic endurance (>10 cycles). Furthermore, the applicability of the ferroelectrics heterostructure is investigated for artificial synapses and for hardware neural networks through training and inference simulation. These results provide a promising pathway for exploring low-dimensional ferroelectronics.
为了满足新兴的以数据为中心的计算应用的需求,铁电场效应晶体管(Fe-FET)因其能量和面积效率以及集成的逻辑-存储功能而被视为半导体电子学的前沿领域。在此,报道了一种与范德华铁电异质结构(CuInP S /α-In Se )集成的Fe-FET的制造和应用。利用源自CIPS和α-In Se 的偶极耦合所增强的极化,所制造的Fe-FET在V = ±10 V时表现出14.5 V的大存储窗口,达到存储窗口与扫描范围之比约为72%。压电力显微镜测量证实,与单铁电层相比,双堆叠铁电体的极化增强导致更宽的磁滞回线。扩展了朗道-哈拉特尼科夫理论以分析铁电异质结构的铁电特性,对磁滞行为和增强的存储窗口形成提供了详细解释。所制造的Fe-FET显示出非易失性存储特性,具有超过10 的高开关电流比、长保持时间(>10 s)和稳定的循环耐久性(>10 个周期)。此外,通过训练和推理模拟研究了铁电异质结构在人工突触和硬件神经网络中的适用性。这些结果为探索低维铁电子学提供了一条有前景的途径。