Department of Radiology, Taizhou Municipal Hospital, Taizhou, 318000, China.
Department of Radiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China.
BMC Cancer. 2024 Sep 2;24(1):1080. doi: 10.1186/s12885-024-12823-4.
To intelligently evaluate the invasiveness of pure ground-glass nodules with multiple classifications using deep learning.
pGGNs in 1136 patients were pathologically confirmed as lung precursor lesions [atypical adenomatous hyperplasia (AAH) and adenocarcinoma in situ (AIS)], minimally invasive adenocarcinoma (MIA), or invasive adenocarcinoma (IAC). Four different models [EfficientNet-b0 2D, dual-head ResNet_3D, a 3D model combining three features (3D_3F), and a 3D model combining 19 features (3D_19F)] were constructed to evaluate the invasiveness of pGGNs using the EfficientNet and ResNet networks. The Obuchowski index was used to evaluate the differences in diagnostic efficiency among the four models.
The patients with pGGNs (360 men, 776 women; mean age, 54.63 ± 12.36 years) included 235 cases of AAH + AIS, 332 cases of MIA, and 569 cases of IAC. In the validation group, the areas under the curve in detecting the invasiveness of pGGNs as a three-category classification (AAH + AIS, MIA, IAC) were 0.8008, 0.8090, 0.8165, and 0.8158 for EfficientNet-b0 2D, dual-head ResNet_3D, 3D_3F, and 3D_19F, respectively, whereas the accuracies were 0.6422, 0.6158, 0.651, and 0.6364, respectively. The Obuchowski index revealed no significant differences in the diagnostic performance of the four models.
The dual-head ResNet_3D_3F model had the highest diagnostic efficiency for evaluating the invasiveness of pGGNs in the four models.
利用深度学习对多种分类的纯磨玻璃结节进行智能侵袭性评估。
对 1136 例患者的 pGGNs 进行病理证实为肺前病变[非典型腺瘤样增生(AAH)和原位腺癌(AIS)]、微浸润性腺癌(MIA)或浸润性腺癌(IAC)。构建了四种不同的模型[EfficientNet-b0 2D、双头 ResNet_3D、结合三种特征的 3D 模型(3D_3F)和结合 19 种特征的 3D 模型(3D_19F)],使用 EfficientNet 和 ResNet 网络评估 pGGNs 的侵袭性。使用 Obuchowski 指数评估四种模型诊断效率的差异。
pGGNs 患者(360 例男性,776 例女性;平均年龄 54.63±12.36 岁)包括 235 例 AAH+AIS、332 例 MIA 和 569 例 IAC。在验证组中,EfficientNet-b0 2D、双头 ResNet_3D、3D_3F 和 3D_19F 检测 pGGNs 侵袭性的曲线下面积分别为 0.8008、0.8090、0.8165 和 0.8158,准确率分别为 0.6422、0.6158、0.651 和 0.6364。Obuchowski 指数显示四种模型的诊断性能无显著差异。
在四种模型中,双头 ResNet_3D_3F 模型对评估 pGGNs 的侵袭性具有最高的诊断效率。