Suppr超能文献

一种基于深度学习的 CT 图像分析协议,用于识别肺腺癌类别和高风险肿瘤区域。

A deep learning based CT image analytics protocol to identify lung adenocarcinoma category and high-risk tumor area.

机构信息

School of Data Science, City University of Hong Kong, Hong Kong SAR, China.

School of Data Science, City University of Hong Kong, Hong Kong SAR, China.

出版信息

STAR Protoc. 2022 Sep 16;3(3):101485. doi: 10.1016/j.xpro.2022.101485. Epub 2022 Jun 22.

Abstract

We present a protocol which implements deep learning-based identification of the lung adenocarcinoma category with high accuracy and generalizability, and labeling of the high-risk area on Computed Tomography (CT) images. The protocol details the execution of the python project based on the dataset used in the original publication or a custom dataset. Detailed steps include data standardization, data preprocessing, model implementation, results display through heatmaps, and statistical analysis process with Origin software or python codes. For complete details on the use and execution of this protocol, please refer to Chen et al. (2022).

摘要

我们提出了一个协议,该协议可以实现基于深度学习的肺腺癌分类,具有很高的准确性和泛化能力,并对 CT 图像上的高危区域进行标记。该协议详细说明了基于原始出版物中使用的数据集或自定义数据集执行 python 项目的步骤。详细步骤包括数据标准化、数据预处理、模型实现、通过热图显示结果,以及使用 Origin 软件或 python 代码进行统计分析过程。有关使用和执行此协议的完整详细信息,请参阅 Chen 等人(2022 年)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2567/9243292/023306f176dd/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验