Suppr超能文献

南非保护区网络的有效性:使用深度神经网络预测可能受到威胁的未评估维管植物均位于保护区内。

Effectiveness of South Africa's network of protected areas: Unassessed vascular plants predicted to be threatened using deep neural networks are all located in protected areas.

作者信息

Kandolo Bahati Samuel, Yessoufou Kowiyou, Kganyago Mahlatse

机构信息

Department of Geography, Environmental Management and Energy Studies University of Johannesburg Johannesburg South Africa.

出版信息

Ecol Evol. 2024 Sep 2;14(9):e70229. doi: 10.1002/ece3.70229. eCollection 2024 Sep.

Abstract

Globally, we are in the midst of a biodiversity crisis and megadiverse countries become key targets for conservation. South Africa, the only country in the world hosting three biodiversity hotspots within its borders, harbours a tremendous diversity of at-risk species deserving to be protected. However, the lengthy risk assessment process and the lack of required data to complete assessments is a serious limitation to conservation since several species may slide into extinction while awaiting risk assessment. Here, we employed a deep neural network model integrating species climatic and geographic features to predict the conservation status of 116 unassessed plant species. Our analysis involved in total of 1072 plant species and 96,938 occurrence points. The best-performing model exhibits high accuracy, reaching up to 83.6% at the binary classification and 56.8% at the detailed classification. Our best-performing model at the binary classification predicts that 32% (25 species) and 8% (3 species) of Data Deficient and Not-Evaluated species respectively, are likely threatened, amounting to a proportion of 24.1% of unassessed species facing a risk of extinction. Interestingly, all unassessed species predicted to be threatened are in protected areas, revealing the effectiveness of South Africa's network of protected areas in conservation, although these likely threatened species are more abundant outside protected areas. Considering the limitation in assessing only species with available data, there remains a possibility of a higher proportion of unassessed species being imperilled.

摘要

在全球范围内,我们正处于生物多样性危机之中,生物多样性丰富的国家成为保护的关键目标。南非是世界上唯一一个境内拥有三个生物多样性热点地区的国家,拥有大量值得保护的濒危物种。然而,漫长的风险评估过程以及缺乏完成评估所需的数据,严重限制了保护工作,因为一些物种可能在等待风险评估的过程中走向灭绝。在此,我们采用了一个整合物种气候和地理特征的深度神经网络模型,来预测116种未评估植物物种的保护状况。我们的分析总共涉及1072种植物物种和96938个出现点。表现最佳的模型具有很高的准确性,在二元分类中高达83.6%,在详细分类中为56.8%。我们在二元分类中表现最佳的模型预测,数据缺乏和未评估物种中分别有32%(25种)和8%(3种)可能受到威胁,占未评估物种面临灭绝风险的比例为24.1%。有趣的是,所有被预测受到威胁的未评估物种都在保护区内,这揭示了南非保护区网络在保护方面的有效性,尽管这些可能受到威胁的物种在保护区外更为丰富。考虑到仅评估有可用数据的物种存在局限性,仍有可能有更高比例的未评估物种处于濒危状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd64/11368562/af45988c4733/ECE3-14-e70229-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验