Suppr超能文献

预测世界开花植物的灭绝风险,以支持它们的保护。

Extinction risk predictions for the world's flowering plants to support their conservation.

机构信息

Royal Botanic Gardens, Kew, Richmond, TW9 3AE, UK.

出版信息

New Phytol. 2024 Apr;242(2):797-808. doi: 10.1111/nph.19592. Epub 2024 Mar 4.

Abstract

More than 70% of all vascular plants lack conservation status assessments. We aimed to address this shortfall in knowledge of species extinction risk by using the World Checklist of Vascular Plants to generate the first comprehensive set of predictions for a large clade: angiosperms (flowering plants, c. 330 000 species). We used Bayesian Additive Regression Trees (BART) to predict the extinction risk of all angiosperms using predictors relating to range size, human footprint, climate, and evolutionary history and applied a novel approach to estimate uncertainty of individual species-level predictions. From our model predictions, we estimate 45.1% of angiosperm species are potentially threatened with a lower bound of 44.5% and upper bound of 45.7%. Our species-level predictions, with associated uncertainty estimates, do not replace full global, or regional Red List assessments, but can be used to prioritise predicted threatened species for full Red List assessment and fast-track predicted non-threatened species for Least Concern assessments. Our predictions and uncertainty estimates can also guide fieldwork, inform systematic conservation planning and support global plant conservation efforts and targets.

摘要

超过 70%的维管植物缺乏保护状况评估。为了弥补对物种灭绝风险认识的不足,我们利用世界维管植物清单(World Checklist of Vascular Plants)生成了第一个关于一个大分支的综合预测:被子植物(开花植物,约 330,000 种)。我们使用贝叶斯加性回归树(Bayesian Additive Regression Trees,BART),利用与范围大小、人类足迹、气候和进化历史相关的预测因子,对所有被子植物的灭绝风险进行预测,并采用了一种新的方法来估计个别物种水平预测的不确定性。根据我们的模型预测,我们估计有 45.1%的被子植物物种可能受到威胁,其下限为 44.5%,上限为 45.7%。我们的物种水平预测及其相关不确定性估计并不能替代全球或区域红色名录评估,但可以用于优先对预测受到威胁的物种进行全面红色名录评估,并对预测非受威胁物种进行快速评估,将其列入最不受关注的类别。我们的预测和不确定性估计还可以指导实地工作,为系统保护规划提供信息,并支持全球植物保护工作和目标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验