Suppr超能文献

参数脆弱模型中的惩罚估计

Penalized estimation in parametric frailty model.

作者信息

Ahelali Marwan H, Alamri Osama Abdulaziz, Sirohi Anu

机构信息

Department of Statistic, University of Tabuk, Tabuk-71491, Kingdom of Saudi Arabia.

Department of Statistics, University of Tabuk, Tabuk-71491, Kingdom of Saudi Arabia.

出版信息

Heliyon. 2024 Aug 8;10(16):e35848. doi: 10.1016/j.heliyon.2024.e35848. eCollection 2024 Aug 30.

Abstract

Frailty model examines the effect of observable and non-observable factors on time to event data. Presence of collinearity produces unstable estimates of parameters. Therefore, this research focus on the penalized estimation of frailty model and proposed the new estimator which is the extension of ridge and principal component estimators. Simulation is run to reveal the performance of proposed estimator. Moreover, the technique is applied on NFHS (National Family Health Survey) data to examine the infant mortality in India.

摘要

脆弱模型研究可观察和不可观察因素对事件发生时间数据的影响。共线性的存在会产生不稳定的参数估计。因此,本研究聚焦于脆弱模型的惩罚估计,并提出了作为岭估计和主成分估计扩展的新估计量。进行模拟以揭示所提出估计量的性能。此外,该技术应用于全国家庭健康调查(NFHS)数据,以研究印度的婴儿死亡率。

相似文献

1
Penalized estimation in parametric frailty model.参数脆弱模型中的惩罚估计
Heliyon. 2024 Aug 8;10(16):e35848. doi: 10.1016/j.heliyon.2024.e35848. eCollection 2024 Aug 30.
2
Biased proportional hazard regression estimator in the existence of collinearity.存在共线性时的偏倚比例风险回归估计量。
Heliyon. 2023 Oct 29;9(11):e21394. doi: 10.1016/j.heliyon.2023.e21394. eCollection 2023 Nov.
9
Some Shrinkage estimators based on median ranked set sampling.一些基于中位数排序集抽样的收缩估计量。
J Appl Stat. 2021 Mar 16;48(13-15):2473-2498. doi: 10.1080/02664763.2021.1895088. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验