Suppr超能文献

包含实现的埃德蒙兹双向量和三向量数据集。

Dataset of Edmonds' bi-vectors and tri-vectors with realizations.

作者信息

Boros Endre, Gurvich Vladimir, Krnc Matjaž, Milanič Martin, Vičič Jernej

机构信息

RUTCOR, Rutgers University, USA.

National Research University Higher School of Economics (HSE), Moscow, Russia.

出版信息

Data Brief. 2024 Jul 31;56:110785. doi: 10.1016/j.dib.2024.110785. eCollection 2024 Oct.

Abstract

In 1965, Jack Edmonds characterized pairs of graphs and with a bijection between their edge sets that form a pair of dual graphs realizing the vertices and countries of a map embedded in a surface. A necessary condition is that, if = (d, …, d) and = (t,…, t) denote the degree sequences of two such graphs, then , where is the number of edges in each of the two graphs and is the Euler characteristic of the surface. However, this condition is not sufficient, and it is an open question to characterize bi-vectors () that are , that is, that can be realized as the degree sequences of pairs and of surface-embedded graphs. The above question is a special case of the following one. A multigraph is even if each vertex has even degree and 3-colored if is equipped with a fixed proper coloring of its vertex set assigning each vertex a color in the set {1,2,3}. Let be a 3-colored even multigraph embedded in a surface so that every face is a triangle. Denote by = (d, …, d), = (t, …, t), and = (δ, ..., …, δ) the sequences of half-degrees of vertices of of colors 1, 2, and 3, respectively. Then, , where is the Euler characteristic of the surface A tri-vector satisfying the above conditions is called . A feasible tri-vector is called if it is realized by a 3-colored triangulation of a surface. Geographic tri-vectors extend the concept of geographic bi-vectors. We present a dataset of geographic bi-vectors and tri-vectors, along with realizations proving that they are geographic.

摘要

1965年,杰克·埃德蒙兹刻画了一对图(G)和(H),它们的边集之间存在一个双射,构成一对对偶图,实现了嵌入在一个曲面中的地图的顶点和面。一个必要条件是,如果(G=(d_1,\ldots,d_n))和(H=(t_1,\ldots,t_m))分别表示这两个图的度序列,那么(\sum_{i = 1}^{n}d_i=\sum_{j = 1}^{m}t_j = 2e),其中(e)是这两个图中每个图的边数,(\chi)是曲面的欧拉示性数。然而,这个条件并不充分,刻画那些是“地理的”双向量((d,t)),即可以作为嵌入在曲面中的图对(G)和(H)的度序列来实现的双向量,这是一个开放问题。上述问题是以下问题的一个特殊情况。一个多重图(G)如果每个顶点的度都是偶数,则称它是偶图;如果(G)的顶点集配备了一个固定的恰当着色,将每个顶点分配到集合({1,2,3})中的一种颜色,则称它是3 - 可着色的。设(G)是一个嵌入在曲面(\Sigma)中的3 - 可着色偶多重图,使得每个面都是三角形。分别用(G_1=(d_1,\ldots,d_n))、(G_2=(t_1,\ldots,t_m))和(G_3=(\delta_1,\ldots,\ldots,\delta_k))表示(G)中颜色为1、2和3的顶点的半度序列。那么,(\sum_{i = 1}^{n}d_i=\sum_{j = 1}^{m}t_j=\sum_{l = 1}^{k}\delta_l = e),其中(e)是曲面(\Sigma)的边数。满足上述条件的三向量((d,t,\delta))称为“可行的”。如果一个可行的三向量由曲面的一个3 - 可着色三角剖分实现,则称它是“地理的”。地理三向量扩展了地理双向量的概念。我们给出了一个地理双向量和三向量的数据集,以及证明它们是地理的实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0c0/11367632/7e87cf0c6921/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验