Suppr超能文献

弥合实验与理论之间的尺寸差距:对实际尺寸的钯颗粒进行乙炔加氢的大规模密度泛函理论计算。

Bridging the size gap between experiment and theory: large-scale DFT calculations on realistic sized Pd particles for acetylene hydrogenation.

作者信息

Kordatos Apostolos, Mohammed Khaled, Vakili Reza, Manyar Haresh, Goguet Alexandre, Gibson Emma, Carravetta Marina, Wells Peter, Skylaris Chris-Kriton

机构信息

School of Chemistry and Chemical Engineering, University of Southampton UK

School of Chemistry and Chemical Engineering, Queen's University Belfast UK.

出版信息

RSC Adv. 2024 Sep 2;14(38):27799-27808. doi: 10.1039/d4ra03369h. eCollection 2024 Aug 29.

Abstract

Metal nanoparticles, often supported on metal oxide promoters, are a cornerstone of heterogeneous catalysis. Experimentally, size effects are well-established and are manifested through changes to catalyst selectivity, activity and durability. Density Functional Theory (DFT) calculations have provided an attractive way to study these effects and rationalise the change in nanoparticle properties. However such computational studies are typically limited to smaller nanoparticles (approximately up to 50 atoms) due to the large computational cost of DFT. How well can such simulations describe the electronic properties of the much larger nanoparticles that are often used in practice? In this study, we use the ONETEP code, which is able to achieve more favourable computational scaling for metallic nanoparticles, to bridge this size gap. We present DFT calculations on entire Pd and Pd carbide nanoparticles of more than 300 atoms (approximately 2.5 nm diameter), and find major differences in the electronic structure of such large nanoparticles, in comparison to the commonly investigated smaller clusters. These differences are also manifested in the calculated chemical properties such as adsorption energies for CH, CH and CH on the pristine Pd and PdC nanoparticles which are significantly larger (up to twice in value) for the ∼300 atoms structures. Furthermore, the adsorption of CH and CH on PdC nanoparticles becomes weaker as more C is introduced in the Pd lattice whilst the impact of C concentration is also observed in the calculated reaction energies towards the hydrogenation of CH, where the formation of CH is hindered. Our simulations show that PdC nanoparticles of about 5% C per atom fraction and diameter of 2.5 nm could be potential candidate catalysts of high activity in hydrogenation reactions. The paradigm presented in this study will enable DFT to be applied on similar sized metal catalyst nanoparticles as in experimental investigations, strengthening the synergy between simulation and experiment in catalysis.

摘要

金属纳米颗粒通常负载在金属氧化物促进剂上,是多相催化的基石。在实验中,尺寸效应已得到充分证实,并通过催化剂选择性、活性和耐久性的变化体现出来。密度泛函理论(DFT)计算为研究这些效应并合理化纳米颗粒性质的变化提供了一种有吸引力的方法。然而,由于DFT计算成本高昂,此类计算研究通常限于较小的纳米颗粒(大约最多50个原子)。这种模拟对于实际中常用的大得多的纳米颗粒的电子性质能描述得有多好呢?在本研究中,我们使用能够对金属纳米颗粒实现更有利计算尺度的ONETEP代码来弥合这一尺寸差距。我们对超过300个原子(直径约2.5纳米)的整个钯和碳化钯纳米颗粒进行了DFT计算,发现与通常研究的较小团簇相比,此类大纳米颗粒的电子结构存在重大差异。这些差异也体现在计算出的化学性质中,例如在原始钯和碳化钯纳米颗粒上CH、CH和CH的吸附能,对于约300个原子的结构,其吸附能显著更大(数值上高达两倍)。此外,随着更多的碳引入钯晶格中,CH和CH在碳化钯纳米颗粒上的吸附变得更弱,同时在计算的CH氢化反应能量中也观察到碳浓度的影响,其中CH的形成受到阻碍。我们的模拟表明,每个原子分数约含5%碳且直径为2.5纳米的碳化钯纳米颗粒可能是氢化反应中高活性的潜在候选催化剂。本研究中提出的范例将使DFT能够应用于与实验研究中类似尺寸的金属催化剂纳米颗粒,加强催化领域模拟与实验之间的协同作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e302/11367406/be646729bc19/d4ra03369h-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验