Morais Eduardo, Cameli Fabio, Stefanidis Georgios D, Bogaerts Annemie
PLASMANT, Department of Chemistry, University of Antwerp Campus Drie Eiken Antwerp 2610 Belgium
Laboratory for Chemical Technology, Ghent University Tech Lane Ghent Science Park 125 Ghent B-9052 Belgium
EES Catal. 2025 Jan 16;3(3):475-487. doi: 10.1039/d4ey00203b. eCollection 2025 May 8.
We study the selective catalytic hydrogenation of CH, the main product from non-oxidative CH coupling in gas-phase plasmas, to CH, a cornerstone of the global chemical industry, by experiments and temperature-dependent micro-kinetic modelling. The model is validated against new experimental data from a nanosecond pulsed plasma reactor integrated with a downstream catalytic bed consisting of Pd/AlO. We explore the effects of varying Pd loadings (0.1, 0.5, and 1 wt%) on the catalyst activity and the CH/CH product distribution. Consistent with the experimental data, our surface micro-kinetic model shows that while higher Pd loadings lower the catalyst activation temperature for CH conversion, they also induce over-hydrogenation to CH at lower temperatures and increase oligomerisation in the experiments, which are detrimental to the CH yield. The model also elucidates reaction mechanisms and pathways across different temperature regimes, expanding our understanding of the hydrogenation process beyond the experimental range. Besides highlighting the importance of optimising the metal loading to balance CH and CH selectivity, our findings demonstrate the effective implementation of post-plasma catalysis using a simple catalyst bed heated by hot gas from the plasma region. This study opens possibilities for testing different plasma sources, catalysts, gas flow magnitude and patterns, and catalyst bed-to-plasma distances.
我们通过实验和基于温度的微观动力学模型,研究了将气相等离子体中非氧化CH偶联的主要产物CH选择性催化氢化为全球化学工业基石之一的CH的过程。该模型针对来自与由Pd/AlO组成的下游催化床集成的纳秒脉冲等离子体反应器的新实验数据进行了验证。我们探究了不同Pd负载量(0.1%、0.5%和1%重量)对催化剂活性以及CH/CH产物分布的影响。与实验数据一致,我们的表面微观动力学模型表明,虽然较高的Pd负载量降低了CH转化的催化剂活化温度,但它们也会在较低温度下引发过度氢化为CH,并在实验中增加齐聚反应,这对CH产率不利。该模型还阐明了不同温度范围内的反应机理和途径,扩展了我们在实验范围之外对氢化过程的理解。除了强调优化金属负载量以平衡CH和CH选择性的重要性外,我们的研究结果还证明了使用由等离子体区域的热气加热的简单催化床有效实施等离子体后催化。这项研究为测试不同的等离子体源、催化剂、气体流量大小和模式以及催化床与等离子体的距离开辟了可能性。