School of Computer and Information Technology, Shanxi University, Taiyuan, China.
Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA.
Hum Brain Mapp. 2024 Sep;45(13):e70005. doi: 10.1002/hbm.70005.
There has been extensive evidence that aging affects human brain function. However, there is no complete picture of what brain functional changes are mostly related to normal aging and how aging affects brain function similarly and differently between males and females. Based on resting-state brain functional connectivity (FC) of 25,582 healthy participants (13,373 females) aged 49-76 years from the UK Biobank project, we employ deep learning with explainable AI to discover primary FCs related to progressive aging and reveal similarity and difference between females and males in brain aging. Using a nested cross-validation scheme, we conduct 4200 deep learning models to classify all paired age groups on the main data for females and males separately and then extract gender-common and gender-specific aging-related FCs. Next, we validate those FCs using additional 21,000 classifiers on the independent data. Our results support that aging results in reduced brain functional interactions for both females and males, primarily relating to the positive connectivity within the same functional domain and the negative connectivity between different functional domains. Regions linked to cognitive control show the most significant age-related changes in both genders. Unique aging effects in males and females mainly involve the interaction between cognitive control and the default mode, vision, auditory, and frontoparietal domains. Results also indicate females exhibit faster brain functional changes than males. Overall, our study provides new evidence about common and unique patterns of brain aging in females and males.
有大量证据表明,衰老会影响人类大脑功能。然而,对于哪些大脑功能变化与正常衰老最相关,以及衰老如何在男性和女性之间以相似和不同的方式影响大脑功能,我们还没有一个完整的认识。基于来自英国生物银行项目的 25582 名健康参与者(13373 名女性)的静息态大脑功能连接(FC),我们使用具有可解释性人工智能的深度学习来发现与逐渐衰老相关的主要 FC,并揭示女性和男性大脑衰老之间的相似性和差异性。我们采用嵌套交叉验证方案,对女性和男性的主要数据分别进行 4200 次深度学习模型分类,以对所有配对年龄组进行分类,然后提取与性别无关和与性别相关的与衰老相关的 FC。接下来,我们使用 21000 个分类器在独立数据上对这些 FC 进行验证。我们的研究结果表明,衰老导致女性和男性的大脑功能相互作用减少,主要与同一功能域内的正连接和不同功能域之间的负连接有关。与认知控制相关的区域在两性中表现出最显著的与年龄相关的变化。男性和女性特有的衰老效应主要涉及认知控制与默认模式、视觉、听觉和额顶叶域之间的相互作用。结果还表明,女性的大脑功能变化比男性更快。总的来说,我们的研究为女性和男性大脑衰老的共同和独特模式提供了新的证据。