Suppr超能文献

皮肤病理学中的人工智能:一项系统综述。

Artificial intelligence in dermatopathology: a systematic review.

作者信息

Lalmalani Roshni Mahesh, Lim Clarissa Xin Yu, Oh Choon Chiat

机构信息

Department of Dermatology, Singapore General Hospital, Singapore, Singapore.

Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.

出版信息

Clin Exp Dermatol. 2025 Jan 27;50(2):251-259. doi: 10.1093/ced/llae361.

Abstract

Medical research, driven by advancing technologies like artificial intelligence (AI), is transforming healthcare. Dermatology, known for its visual nature, benefits from AI, especially in dermatopathology with digitized slides. This review explores AI's role, challenges, opportunities and future potential in enhancing dermatopathological diagnosis and care. Adhering to PRISMA and Cochrane Handbook standards, this systematic review explored AI's function in dermatopathology. It employed an interdisciplinary method, encompassing diverse study types and comprehensive database searches. Inclusion criteria encompassed peer-reviewed articles from 2000 to 2023, with a focus on practical AI use in dermatopathology. Numerous studies have investigated AI's potential in dermatopathology. We reviewed 112 papers. Notable applications include AI classifying histopathological images of naevi and melanomas, although challenges exist regarding subtype differentiation and generalizability. AI achieved high accuracy in melanoma recognition from formalin-fixed paraffin-embedded samples but faced limitations due to small datasets. Deep learning algorithms showed diagnostic accuracy for specific skin conditions, but challenges persisted, such as small sample sizes and the need for prospective validation. This systematic review underscores AI's potential in enhancing dermatopathology for better diagnosis and patient care. Addressing challenges like limited datasets and potential biases is essential. Future directions involve expanding datasets, conducting validation studies, promoting interdisciplinary collaboration, and creating patient-centred AI tools in dermatopathology to enhance accuracy, accessibility and patient-focused care.

摘要

由人工智能(AI)等先进技术驱动的医学研究正在改变医疗保健。皮肤病学以其视觉特性而闻名,受益于人工智能,尤其是在数字化切片的皮肤病理学方面。本综述探讨了人工智能在加强皮肤病理学诊断和护理方面的作用、挑战、机遇和未来潜力。遵循PRISMA和Cochrane手册标准,本系统综述探讨了人工智能在皮肤病理学中的作用。它采用了跨学科方法,涵盖了不同的研究类型和全面的数据库搜索。纳入标准包括2000年至2023年的同行评审文章,重点是人工智能在皮肤病理学中的实际应用。许多研究调查了人工智能在皮肤病理学中的潜力。我们审查了112篇论文。显著的应用包括人工智能对痣和黑色素瘤的组织病理学图像进行分类,尽管在亚型区分和普遍性方面存在挑战。人工智能在从福尔马林固定石蜡包埋样本中识别黑色素瘤方面取得了很高的准确率,但由于数据集较小而面临局限性。深度学习算法对特定皮肤疾病显示出诊断准确性,但挑战仍然存在,如样本量小和需要进行前瞻性验证。本系统综述强调了人工智能在加强皮肤病理学以实现更好诊断和患者护理方面的潜力。应对数据集有限和潜在偏差等挑战至关重要。未来的方向包括扩大数据集、进行验证研究、促进跨学科合作以及在皮肤病理学中创建以患者为中心的人工智能工具,以提高准确性、可及性和以患者为中心的护理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验