Suppr超能文献

探索大语言模型在血液学中的作用:对应用、益处及局限性的重点综述

Exploring the role of Large Language Models in haematology: A focused review of applications, benefits and limitations.

作者信息

Mudrik Aya, Nadkarni Girish N, Efros Orly, Glicksberg Benjamin S, Klang Eyal, Soffer Shelly

机构信息

Ben-Gurion University of the Negev, Be'er Sheva, Israel.

The Division of Data-Driven and Digital Medicine (D3M), Icahn School of Medicine at Mount Sinai, New York, New York, USA.

出版信息

Br J Haematol. 2024 Nov;205(5):1685-1698. doi: 10.1111/bjh.19738. Epub 2024 Sep 3.

Abstract

Large language models (LLMs) have significantly impacted various fields with their ability to understand and generate human-like text. This study explores the potential benefits and limitations of integrating LLMs, such as ChatGPT, into haematology practices. Utilizing systematic review methodologies, we analysed studies published after 1 December 2022, from databases like PubMed, Web of Science and Scopus, and assessing each for bias with the QUADAS-2 tool. We reviewed 10 studies that applied LLMs in various haematology contexts. These models demonstrated proficiency in specific tasks, such as achieving 76% diagnostic accuracy for haemoglobinopathies. However, the research highlighted inconsistencies in performance and reference accuracy, indicating variability in reliability across different uses. Additionally, the limited scope of these studies and constraints on datasets could potentially limit the generalizability of our findings. The findings suggest that, while LLMs provide notable advantages in enhancing diagnostic processes and educational resources within haematology, their integration into clinical practice requires careful consideration. Before implementing them in haematology, rigorous testing and specific adaptation are essential. This involves validating their accuracy and reliability across different scenarios. Given the field's complexity, it is also critical to continuously monitor these models and adapt them responsively.

摘要

大语言模型(LLMs)凭借其理解和生成类人文本的能力,对各个领域产生了重大影响。本研究探讨了将诸如ChatGPT等大语言模型整合到血液学实践中的潜在益处和局限性。我们采用系统综述方法,分析了2022年12月1日之后发表的研究,这些研究来自PubMed、科学网和Scopus等数据库,并使用QUADAS - 2工具评估每项研究的偏倚情况。我们回顾了10项在各种血液学背景下应用大语言模型的研究。这些模型在特定任务中表现出了一定能力,例如对血红蛋白病的诊断准确率达到了76%。然而,研究强调了性能和参考文献准确性方面的不一致性,表明不同用途的可靠性存在差异。此外,这些研究的范围有限以及数据集的限制可能会限制我们研究结果的普遍性。研究结果表明,虽然大语言模型在加强血液学诊断过程和教育资源方面具有显著优势,但将它们整合到临床实践中需要谨慎考虑。在血液学中实施这些模型之前,严格的测试和特定的调整至关重要。这包括在不同场景下验证它们的准确性和可靠性。鉴于该领域的复杂性,持续监测这些模型并做出相应调整也至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验