Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States.
Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, United States.
ACS Chem Biol. 2024 Sep 20;19(9):1935-1941. doi: 10.1021/acschembio.4c00515. Epub 2024 Sep 3.
Cell-cell interactions govern diverse biological activities, necessitating molecular tools for understanding and regulating these interactions. Photoredox chemistry can detect cell-cell interactions by anchoring photocatalysts on cellular membranes to generate reactive species that tag closely contacting cells. However, the activation of photocatalysts lacks precise spatial resolution for selectively labeling intercellular interfaces. Herein, we report a DNA-based approach to selectively activate photocatalytic reactions at cell-cell contacts. Two cell populations are coated with distinct DNA strands, which interact at intercellular contacts, mediating the site-specific turn-on of a Ru(bpy)-type photocatalyst. We demonstrate high spatial specificity for intercellular chemical labeling in cultured mammalian cells. Furthermore, as a proof of concept, we activate the dynamic DNA catalyst at cell-cell contacts in response to customized DNA triggers. This study lays the foundation for designing versatile chemical tools with high spatial precision and programmable responsiveness, along with the temporal resolution afforded by photoirradiation, to investigate and manipulate cell-cell interactions.
细胞间相互作用控制着多种生物学活性,因此需要分子工具来理解和调节这些相互作用。光氧化还原化学可以通过将光催化剂锚定在细胞膜上来检测细胞间相互作用,从而产生标记紧密接触细胞的活性物质。然而,光催化剂的激活缺乏精确的空间分辨率,无法选择性标记细胞间界面。在此,我们报告了一种基于 DNA 的方法,可在细胞接触处选择性激活光催化反应。两种细胞群体都涂覆有不同的 DNA 链,这些 DNA 链在细胞间接触处相互作用,介导 Ru(bpy)型光催化剂的特异性开启。我们在培养的哺乳动物细胞中证明了细胞间化学标记具有很高的空间特异性。此外,作为概念验证,我们响应定制的 DNA 触发,在细胞接触处激活动态 DNA 催化剂。这项研究为设计具有高空间精度和可编程响应性的多功能化学工具奠定了基础,同时还具有光照射提供的时间分辨率,可用于研究和操纵细胞间相互作用。