Suppr超能文献

等离子体增强荧光和电化学生物适体传感器用于 SARS-CoV-2 刺突蛋白检测。

Plasmon-enhanced fluorescence and electrochemical aptasensor for SARS-CoV-2 Spike protein detection.

机构信息

Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428, Jülich, Germany; Institute of Materials in Electrical Engineering 1, RWTH Aachen University, 52074, Aachen, Germany.

Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428, Jülich, Germany.

出版信息

Talanta. 2025 Jan 1;281:126760. doi: 10.1016/j.talanta.2024.126760. Epub 2024 Aug 26.

Abstract

In this work, we combined plasmon-enhanced fluorescence and electrochemical (PEF-EC) transduction mechanisms to realize a highly sensitive dual-transducer aptasensor. To implement two traducers in one biosensor, a novel large-scale nanoimprint lithography process was introduced to fabricate gold nanopit arrays (AuNpA) with unique fringe structures. Light transmitting through the AuNpA samples exhibited a surface plasmon polariton peak overlapping with the excitation peak of the C7 aptamer-associated fluorophore methylene blue (MB). We observed a five and seven-times higher average fluorescence intensity over the AuNpA and fringe structure, respectively, in comparison to a plane Au film. Furthermore, the MB fluorophore was simultaneously utilized as a redox probe for electrochemical investigations and is described here as a dual transduction label for the first time. The novel dual transducer system was deployed for the detection of SARS-CoV-2 Spike protein via a C7 aptamer in combination with a strand displacement protocol. The PEF transducer exhibited a detection range from 1 fg/mL to 10 ng/mL with a detection limit of 0.07 fg/mL, while the EC traducer showed an extended dynamic range from 1 fg/mL to 100 ng/mL with a detection limit of 0.15 fg/mL. This work provides insights into an easy-to-perform, large-scale fabrication process for nanostructures enabling plasmon-enhanced fluorescence, and the development of an advanced but universal aptasensor platform.

摘要

在这项工作中,我们结合等离子体增强荧光和电化学(PEF-EC)转换机制,实现了一种高灵敏度的双换能器适体传感器。为了在一个生物传感器中实现两个换能器,引入了一种新颖的大规模纳米压印光刻工艺来制造具有独特边缘结构的金纳米坑阵列(AuNpA)。通过 AuNpA 样品传输的光显示出与 C7 适体相关荧光团亚甲基蓝(MB)的激发峰重叠的表面等离子体极化激元峰。与平面 Au 膜相比,我们观察到 AuNpA 和边缘结构的平均荧光强度分别高出五倍和七倍。此外,MB 荧光团同时被用作电化学研究的氧化还原探针,并首次被描述为双转换标记。该新型双换能器系统通过 C7 适体与链置换协议相结合,用于检测 SARS-CoV-2 刺突蛋白。PEF 换能器的检测范围为 1 fg/mL 至 10 ng/mL,检测限为 0.07 fg/mL,而 EC 换能器的检测范围为 1 fg/mL 至 100 ng/mL,检测限为 0.15 fg/mL。这项工作为易于执行的、大规模制造用于等离子体增强荧光的纳米结构的工艺提供了见解,并开发了一种先进但通用的适体传感器平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验