Suppr超能文献

计算洞察主动脉淀粉样 medin 多肽的聚集机制和淀粉样形成核心。

Computational insights into the aggregation mechanism and amyloidogenic core of aortic amyloid medin polypeptide.

机构信息

Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo 315211, China.

School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.

出版信息

Colloids Surf B Biointerfaces. 2024 Dec;244:114192. doi: 10.1016/j.colsurfb.2024.114192. Epub 2024 Aug 30.

Abstract

Medin amyloid, prevalent in the vessel walls of 97 % of individuals over 50, contributes to arterial stiffening and cerebrovascular dysfunction, yet our understanding of its aggregation mechanism remains limited. Dividing the full-length 50-amino-acid medin peptide into five 10-residue segments, we conducted individual investigations on each segment's self-assembly dynamics via microsecond-timescale atomistic discrete molecular dynamics (DMD) simulations. Our findings showed that medin and medin segments predominantly existed as isolated unstructured monomers, unable to form stable oligomers. Medin exhibited moderate aggregation, forming dynamic β-sheet oligomers with frequent association and dissociation. Conversely, medin and medin segments demonstrated significant self-assembly capability, readily forming stable β-sheet-rich oligomers. Residue pairwise contact frequency analysis highlighted the critical roles of residues 22-26 and 43-49 in driving the self-assembly of medin and medin, acting as the β-sheet core and facilitating β-strand formation in other regions within medin monomers, expecting to extend to oligomers and fibrils. Regions containing residues 22-26 and 43-49, with substantial self-assembly abilities and assistance in β-sheet formation, represent crucial targets for amyloid inhibitor drug design against aortic medial amyloidosis (AMA). In summary, our study not only offers deep insights into the mechanism of medin amyloid formation but also provides crucial theoretical and practical guidance for future treatments of AMA.

摘要

淀粉样物质 MEDIN 普遍存在于 50 岁以上人群 97%的血管壁中,导致动脉僵硬和脑血管功能障碍,但我们对其聚集机制的理解仍然有限。我们将全长 50 个氨基酸的 MEDIN 肽分成五个 10 个氨基酸的片段,通过微秒时间尺度的原子离散分子动力学(DMD)模拟对每个片段的自组装动力学进行了单独研究。我们的研究结果表明,MEDIN 和 MEDIN 片段主要以孤立的无结构单体形式存在,无法形成稳定的寡聚物。MEDIN 表现出中等程度的聚集性,形成动态的β-折叠寡聚物,频繁地缔合和解离。相反,MEDIN 和 MEDIN 片段表现出显著的自组装能力,容易形成稳定的富含β-折叠的寡聚物。残基两两接触频率分析突出了残基 22-26 和 43-49 在驱动 MEDIN 和 MEDIN 自组装中的关键作用,它们充当β-折叠核心,并促进 MEDIN 单体中其他区域的β-链形成,预计将延伸到寡聚物和原纤维。含有残基 22-26 和 43-49 的区域具有很强的自组装能力,并有助于β-折叠的形成,是针对主动脉中层淀粉样变性(AMA)的淀粉样抑制剂药物设计的关键靶标。总之,我们的研究不仅深入了解了 MEDIN 淀粉样形成的机制,而且为未来 AMA 的治疗提供了重要的理论和实践指导。

相似文献

本文引用的文献

9
Dissecting the Self-assembly Dynamics of Imperfect Repeats in α-Synuclein.解析α-突触核蛋白中不完美重复的自组装动力学。
J Chem Inf Model. 2023 Jun 12;63(11):3591-3600. doi: 10.1021/acs.jcim.3c00533. Epub 2023 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验