Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Napoli, Italy.
Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
Int J Biol Macromol. 2024 Nov;279(Pt 2):135277. doi: 10.1016/j.ijbiomac.2024.135277. Epub 2024 Sep 1.
Mycoplasma pneumoniae and Mycoplasma genitalium are two emerging bacterial pathogens that colonize the human respiratory and urogenital epithelia, respectively. Both pathogens express cell surface cytoadhesins that play a crucial role in the interaction with the host, mediating the attachment to sialylated glycan receptors and triggering infection. The design of competitive binding inhibitors of Mycoplasma cytoadhesins has potential to disrupt these interactions and lessen bacterial pathogenesis. To this end, we report here molecular insights into the adhesion mechanisms of M. pneumoniae and M. genitalium, which are largely mediated by sialylated glycans on the host cell surface. In detail, a combination of Nuclear Magnetic Resonance (NMR) spectroscopy, fluorescence analysis and computational studies allowed us to explore the recognition by the cytoadhesins P40/P90 in M. pneumoniae and P110 in M. genitalium of sialylated N- and O-glycans. We reveal that, unlike other bacterial adhesins, which are characterized by a wide binding pocket, Mycoplasma cytoadhesins principally accommodate the sialic acid residue, in a similar manner to mammalian Siglecs. These findings represent crucial insight into the future development of novel compounds to counteract Mycoplasma infections by inhibiting bacterial adherence to host tissues.
肺炎支原体和生殖支原体是两种新兴的细菌病原体,分别定植于人体呼吸道和泌尿生殖道上皮。这两种病原体均表达细胞表面细胞黏附素,在与宿主相互作用中发挥关键作用,介导与唾液酸化聚糖受体的附着,并触发感染。设计竞争结合抑制剂来抑制支原体细胞黏附素的结合,可能会破坏这些相互作用并减轻细菌的发病机制。为此,我们在此报告对肺炎支原体和生殖支原体黏附机制的分子见解,这些机制在很大程度上是由宿主细胞表面的唾液酸化聚糖介导的。具体而言,NMR 光谱学、荧光分析和计算研究的结合使我们能够探索 P40/P90 细胞黏附素在肺炎支原体和 P110 在生殖支原体中对唾液酸化 N-和 O-聚糖的识别。我们揭示了与其他细菌黏附素不同,这些黏附素的特征是具有广泛的结合口袋,而支原体细胞黏附素主要容纳唾液酸残基,类似于哺乳动物 Siglecs。这些发现为未来开发新型化合物以通过抑制细菌对宿主组织的附着来抵抗支原体感染提供了重要的见解。