Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany.
Nat Commun. 2024 Sep 3;15(1):7681. doi: 10.1038/s41467-024-51964-9.
Nascent chains undergo co-translational enzymatic processing as soon as their N-terminus becomes accessible at the ribosomal polypeptide tunnel exit (PTE). In eukaryotes, N-terminal methionine excision (NME) by Methionine Aminopeptidases (MAP1 and MAP2), and N-terminal acetylation (NTA) by N-Acetyl-Transferase A (NatA), is the most common combination of subsequent modifications carried out on the 80S ribosome. How these enzymatic processes are coordinated in the context of a rapidly translating ribosome has remained elusive. Here, we report two cryo-EM structures of multi-enzyme complexes assembled on vacant human 80S ribosomes, indicating two routes for NME-NTA. Both assemblies form on the 80S independent of nascent chain substrates. Irrespective of the route, NatA occupies a non-intrusive 'distal' binding site on the ribosome which does not interfere with MAP1 or MAP2 binding nor with most other ribosome-associated factors (RAFs). NatA can partake in a coordinated, dynamic assembly with MAP1 through the hydra-like chaperoning function of the abundant Nascent Polypeptide-Associated Complex (NAC). In contrast to MAP1, MAP2 completely covers the PTE and is thus incompatible with NAC and MAP1 recruitment. Together, our data provide the structural framework for the coordinated orchestration of NME and NTA in protein biogenesis.
新生肽链的 N 端一旦可从核糖体多肽隧道出口(PTE)进入,就会发生共翻译酶加工。在真核生物中,甲硫氨酸氨肽酶(MAP1 和 MAP2)切除 N 端甲硫氨酸(NME)和 N-乙酰转移酶 A(NatA)进行 N 端乙酰化(NTA)是在 80S 核糖体上进行的最常见的后续修饰组合。这些酶促过程如何在快速翻译核糖体的背景下协调仍然难以捉摸。在这里,我们报告了两种组装在空载人 80S 核糖体上的多酶复合物的冷冻电镜结构,表明了 NME-NTA 的两种途径。这两种组装都独立于新生链底物在 80S 上形成。无论途径如何,NatA 占据核糖体上非侵入性的“远端”结合位点,不干扰 MAP1 或 MAP2 结合,也不干扰大多数其他核糖体相关因子(RAFs)。NatA 可以通过丰富的新生多肽相关复合物(NAC)的水螅样伴侣功能与 MAP1 进行协调、动态组装。与 MAP1 不同,MAP2 完全覆盖 PTE,因此与 NAC 和 MAP1 的招募不兼容。总之,我们的数据为蛋白质生物发生中 NME 和 NTA 的协调协调提供了结构框架。