文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用笼型有机光敏剂调节单线态氧的产生。

Tuning singlet oxygen generation with caged organic photosensitizers.

机构信息

Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK.

IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.

出版信息

Nat Commun. 2024 Sep 3;15(1):7689. doi: 10.1038/s41467-024-51872-y.


DOI:10.1038/s41467-024-51872-y
PMID:39227575
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11372191/
Abstract

Controlling the succession of chemical processes with high specificity in complex systems is advantageous for widespread applications, from biomedical research to drug manufacturing. Despite synthetic advances in bioorthogonal and photochemical methodologies, there is a need for generic chemical approaches that can universally modulate photodynamic reactivity in organic photosensitizers. Herein we present a strategy to fine-tune the production of singlet oxygen in multiple photosensitive scaffolds under the activation of bioresponsive and bioorthogonal stimuli. We demonstrate that the photocatalytic activity of nitrobenzoselenadiazoles can be fully blocked by site-selective incorporation of electron-withdrawing carbamate moieties and restored on demand upon uncaging with a wide range of molecular triggers, including abiotic transition-metal catalysts. We also prove that this strategy can be expanded to most photosensitizers, including diverse structures and spectral properties. Finally, we show that such advanced control of singlet oxygen generation can be broadly applied to the photodynamic ablation of human cells as well as to regulate the release of singlet oxygen in the semi-synthesis of natural product drugs.

摘要

在复杂体系中,通过高特异性控制化学过程的继替对于从生物医学研究到药物制造的广泛应用是有利的。尽管在生物正交和光化学方法学方面取得了合成进展,但仍需要通用的化学方法,以便能够普遍调节有机光敏剂中的光动力反应性。在此,我们提出了一种策略,可在生物响应性和生物正交刺激物的激活下,对多种光敏支架中 singlet oxygen 的生成进行精细调控。我们证明,通过选择性地引入吸电子氨基甲酸酯基团,可以完全阻断硝基苯并硒二唑的光催化活性,并且通过使用广泛的分子触发剂(包括非生物过渡金属催化剂)进行解笼,可以按需恢复其活性。我们还证明,该策略可以扩展到大多数光敏剂,包括各种结构和光谱特性的光敏剂。最后,我们表明,这种对 singlet oxygen 生成的高级控制可以广泛应用于人类细胞的光动力消融,以及调节天然产物药物半合成中 singlet oxygen 的释放。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5bb/11372191/d08292c3a884/41467_2024_51872_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5bb/11372191/246045c0d050/41467_2024_51872_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5bb/11372191/3841c2501d9d/41467_2024_51872_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5bb/11372191/6433aab79153/41467_2024_51872_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5bb/11372191/7387bccf7886/41467_2024_51872_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5bb/11372191/d08292c3a884/41467_2024_51872_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5bb/11372191/246045c0d050/41467_2024_51872_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5bb/11372191/3841c2501d9d/41467_2024_51872_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5bb/11372191/6433aab79153/41467_2024_51872_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5bb/11372191/7387bccf7886/41467_2024_51872_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5bb/11372191/d08292c3a884/41467_2024_51872_Fig5_HTML.jpg

相似文献

[1]
Tuning singlet oxygen generation with caged organic photosensitizers.

Nat Commun. 2024-9-3

[2]
Singlet Molecular Oxygen: from COIL Lasers to Photodynamic Cancer Therapy.

J Phys Chem B. 2023-3-23

[3]
Investigation of singlet oxygen quantum yield of protonated water-soluble glycosylated porphyrin photosensitizer for photodynamic therapy.

Photochem Photobiol Sci. 2025-5-27

[4]
Innovative approaches for cancer treatment: graphene quantum dots for photodynamic and photothermal therapies.

J Mater Chem B. 2024-5-8

[5]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[6]
The safety and efficiency of photodynamic therapy for the treatment of osteosarcoma: A systematic review of in vitro experiment and animal model reports.

Photodiagnosis Photodyn Ther. 2022-12

[7]
Constructing 1 + 1 > 2 Photosensitizers Based on NIR Cyanine-Iridium(III) Complexes for Enhanced Photodynamic Cancer Therapy.

Molecules. 2025-6-19

[8]
Short-Term Memory Impairment

2025-1

[9]
The Black Book of Psychotropic Dosing and Monitoring.

Psychopharmacol Bull. 2024-7-8

[10]
Genetic deviation associated with photodynamic therapy in HeLa cell.

Photodiagnosis Photodyn Ther. 2023-6

引用本文的文献

[1]
Rabies Virus Targeting NIR-II Phototheranostics.

J Am Chem Soc. 2025-5-14

[2]
Recent Advances of Nitrobenzoselenadiazole for Imaging and Therapy.

ACS Sens. 2025-3-28

[3]
Fluorogenic Platform for Real-Time Imaging of Subcellular Payload Release in Antibody-Drug Conjugates.

J Am Chem Soc. 2025-3-5

[4]
Activatable Photosensitizers: From Fundamental Principles to Advanced Designs.

Angew Chem Int Ed Engl. 2025-4-7

本文引用的文献

[1]
Enzyme-Activatable Near-Infrared Hemicyanines as Modular Scaffolds for in vivo Photodynamic Therapy.

Angew Chem Int Ed Engl. 2024-7-22

[2]
Bioorthogonal Catalysis by Encapsulated Nanoalloys: Overcoming Intracellular Deactivation.

Nano Lett. 2023-2-8

[3]
Toward Precise Antitumoral Photodynamic Therapy Using a Dual Receptor-Mediated Bioorthogonal Activation Approach.

Angew Chem Int Ed Engl. 2023-1-9

[4]
Thiocoumarins: From the Synthesis to the Biological Applications.

Molecules. 2022-7-31

[5]
Singlet Oxygen, Photodynamic Therapy, and Mechanisms of Cancer Cell Death.

J Oncol. 2022-6-25

[6]
Fibroblast activation protein α activatable theranostic pro-photosensitizer for accurate tumor imaging and highly-specific photodynamic therapy.

Theranostics. 2022

[7]
Turn-on Fluorescent Biosensors for Imaging Hypoxia-like Conditions in Living Cells.

J Am Chem Soc. 2022-5-11

[8]
A Bivalent Activatable Fluorescent Probe for Screening and Intravital Imaging of Chemotherapy-Induced Cancer Cell Death.

Angew Chem Int Ed Engl. 2022-1-26

[9]
Truly-Biocompatible Gold Catalysis Enables Vivo-Orthogonal Intra-CNS Release of Anxiolytics.

Angew Chem Int Ed Engl. 2022-1-3

[10]
Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy.

Chem Rev. 2021-11-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索