Wu Bo, Zheng Huijing, Wu Yan-Qi, Huang Zhicheng, Thong Hao-Cheng, Tao Hong, Ma Jian, Zhao Chunlin, Xu Ze, Liu Yi-Xuan, Xing Zhipeng, Liang Naixin, Yao Fang-Zhou, Wu Chao-Feng, Wang Ke, Han Bing
Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Sichuan Province Key Laboratory of Information Materials, Southwest Minzu University, Chengdu, P. R. China.
State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, P. R. China.
Nat Commun. 2024 Sep 4;15(1):7700. doi: 10.1038/s41467-024-52031-z.
Despite the pivotal role of stannum doping in achieving ultrahigh piezoelectric performance in barium titanate-based ceramics, the fundamental mechanisms underlying this enhancement remain elusive. Here, we introduce a single variable nonstoichiometric stannum strategy in lead-free barium titanate-based ceramics with giant piezoelectricity, revealing that stannum doping contributes intrinsically and extrinsically to enhance piezoelectricity. Density functional theory calculations elucidate the intrinsic enhancement of polarization arising from lattice distortion and increased space for titanium-oxygen bonds induced by optimal stannum doping, which is corroborated by Rayleigh analysis. A phase transition from ferroelectric multiphase coexistence to paraelectric phase is observed, alongside a rapid miniaturized and eventually disappeared domains with increasing stannum doping. This evolution in phase structure and domain configuration induces a nearly vanishing polarization anisotropy and low domain wall energy, facilitating easy polarization rotation and domain wall motion, thereby significantly contributing to the extrinsic piezoelectric response. Consequently, the origins of ultrahigh performance can be attributed to the synergistic effect of stannum-induced intrinsic and extrinsic contributions in barium titanate-based ceramics. This study provides fundamental insights into the role of doping elements and offers guidance for the design of high-performance piezoelectrics.
尽管锡掺杂在实现钛酸钡基陶瓷的超高压电性能方面起着关键作用,但这种增强作用背后的基本机制仍然难以捉摸。在此,我们在具有巨大压电性的无铅钛酸钡基陶瓷中引入了单变量非化学计量锡策略,揭示了锡掺杂在本质上和外在因素上都有助于增强压电性。密度泛函理论计算阐明了由最佳锡掺杂引起的晶格畸变和钛 - 氧键空间增加所导致的极化的内在增强,这一点得到了瑞利分析的证实。随着锡掺杂量的增加,观察到从铁电多相共存到顺电相的相变,同时畴迅速小型化并最终消失。相结构和畴构型的这种演变导致极化各向异性几乎消失且畴壁能量较低,有利于极化轻松旋转和畴壁运动,从而显著促进了外在压电响应。因此,超高性能的起源可归因于锡在钛酸钡基陶瓷中引起的内在和外在贡献的协同效应。这项研究为掺杂元素的作用提供了基本见解,并为高性能压电材料的设计提供了指导。