Suppr超能文献

铁电材料中的损耗

Losses in Ferroelectric Materials.

作者信息

Liu Gang, Zhang Shujun, Jiang Wenhua, Cao Wenwu

机构信息

Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin 150080, China ; Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA ; Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China.

Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA.

出版信息

Mater Sci Eng R Rep. 2015 Mar 1;89:1-48. doi: 10.1016/j.mser.2015.01.002.

Abstract

Ferroelectric materials are the best dielectric and piezoelectric materials known today. Since the discovery of barium titanate in the 1940s, lead zirconate titanate ceramics in the 1950s and relaxor-PT single crystals (such as lead magnesium niobate-lead titanate and lead zinc niobate-lead titanate) in the 1980s and 1990s, perovskite ferroelectric materials have been the dominating piezoelectric materials for electromechanical devices, and are widely used in sensors, actuators and ultrasonic transducers. Energy losses (or energy dissipation) in ferroelectrics are one of the most critical issues for high power devices, such as therapeutic ultrasonic transducers, large displacement actuators, SONAR projectors, and high frequency medical imaging transducers. The losses of ferroelectric materials have three distinct types, i.e., elastic, piezoelectric and dielectric losses. People have been investigating the mechanisms of these losses and are trying hard to control and minimize them so as to reduce performance degradation in electromechanical devices. There are impressive progresses made in the past several decades on this topic, but some confusions still exist. Therefore, a systematic review to define related concepts and clear up confusions is urgently in need. With this objective in mind, we provide here a comprehensive review on the energy losses in ferroelectrics, including related mechanisms, characterization techniques and collections of published data on many ferroelectric materials to provide a useful resource for interested scientists and engineers to design electromechanical devices and to gain a global perspective on the complex physical phenomena involved. More importantly, based on the analysis of available information, we proposed a general theoretical model to describe the inherent relationships among elastic, dielectric, piezoelectric and mechanical losses. For multi-domain ferroelectric single crystals and ceramics, intrinsic and extrinsic energy loss mechanisms are discussed in terms of compositions, crystal structures, temperature, domain configurations, domain sizes and grain boundaries. The intrinsic and extrinsic contributions to the total energy dissipation are quantified. In domain engineered ferroelectric single crystals and ceramics, polarization rotations, domain wall motions and mechanical wave scatterings at grain boundaries are believed to control the mechanical quality factors of piezoelectric resonators. We show that a thorough understanding on the kinetic processes is critical in analyzing energy loss behavior and other time-dependent properties in ferroelectric materials. At the end of the review, existing challenges in the study and control of losses in ferroelectric materials are analyzed, and future perspective in resolving these issues is discussed.

摘要

铁电材料是当今已知的最佳介电和压电材料。自20世纪40年代发现钛酸钡、50年代发现锆钛酸铅陶瓷以及80年代和90年代发现弛豫铁电体-钛酸铅单晶(如铌镁酸铅-钛酸铅和铌锌酸铅-钛酸铅)以来,钙钛矿铁电材料一直是机电设备的主要压电材料,并广泛应用于传感器、致动器和超声换能器。铁电体中的能量损耗(或能量耗散)是高功率设备(如治疗超声换能器、大位移致动器、声纳投影仪和高频医学成像换能器)最关键的问题之一。铁电材料的损耗有三种不同类型,即弹性损耗、压电损耗和介电损耗。人们一直在研究这些损耗的机制,并努力控制和最小化它们,以减少机电设备中的性能退化。在过去几十年里,在这个主题上取得了令人瞩目的进展,但仍存在一些困惑。因此,迫切需要进行系统的综述来定义相关概念并消除困惑。出于这个目的,我们在此对铁电体中的能量损耗进行全面综述,包括相关机制、表征技术以及许多铁电材料的已发表数据汇总,为感兴趣的科学家和工程师设计机电设备以及全面了解其中涉及的复杂物理现象提供有用资源。更重要的是,基于对现有信息的分析,我们提出了一个通用理论模型来描述弹性、介电、压电和机械损耗之间的内在关系。对于多畴铁电单晶和陶瓷,从成分、晶体结构、温度、畴结构、畴尺寸和晶界等方面讨论了本征和非本征能量损耗机制。对总能量耗散的本征和非本征贡献进行了量化。在畴工程铁电单晶和陶瓷中,极化旋转、畴壁运动和晶界处的机械波散射被认为控制着压电谐振器的机械品质因数。我们表明,对动力学过程的透彻理解对于分析铁电材料中的能量损耗行为和其他与时间相关的特性至关重要。在综述结尾,分析了铁电材料损耗研究和控制方面现有的挑战,并讨论了解决这些问题的未来前景。

相似文献

1
Losses in Ferroelectric Materials.铁电材料中的损耗
Mater Sci Eng R Rep. 2015 Mar 1;89:1-48. doi: 10.1016/j.mser.2015.01.002.
7
Piezoelectric activity in Perovskite ferroelectric crystals.钙钛矿铁电晶体中的压电活性。
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Jan;62(1):18-32. doi: 10.1109/TUFFC.2014.006660.

引用本文的文献

2
Research trends of piezoelectric materials in neurodegenerative disease applications.压电材料在神经退行性疾病应用中的研究趋势
Bioact Mater. 2025 Jun 13;52:366-392. doi: 10.1016/j.bioactmat.2025.06.022. eCollection 2025 Oct.
6
Giant energy storage and power density negative capacitance superlattices.巨型储能与功率密度负电容超晶格
Nature. 2024 May;629(8013):803-809. doi: 10.1038/s41586-024-07365-5. Epub 2024 Apr 9.
8
THz Thin Film Varactor Based on Integrated Ferroelectric HfZrO.基于集成铁电铪锆氧化物的太赫兹薄膜变容二极管
ACS Appl Electron Mater. 2022 Dec 23;5(1):189-195. doi: 10.1021/acsaelm.2c01273. eCollection 2023 Jan 24.

本文引用的文献

4
Relaxor-PbTiO3 single crystals for various applications.用于各种应用的弛豫铁电体-钛酸铅单晶。
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Aug;60(8):1572-80. doi: 10.1109/TUFFC.2013.2737.
5
Giant piezoelectricity in potassium-sodium niobate lead-free ceramics.无铅铌酸钾钠陶瓷中的巨压电性。
J Am Chem Soc. 2014 Feb 19;136(7):2905-10. doi: 10.1021/ja500076h. Epub 2014 Feb 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验