Suppr超能文献

MRDPDA:一种用于预测 piRNA-疾病关联的多拉普拉斯正则化深度 FM 模型。

MRDPDA: A multi-Laplacian regularized deepFM model for predicting piRNA-disease associations.

机构信息

Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, China.

Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

出版信息

J Cell Mol Med. 2024 Sep;28(17):e70046. doi: 10.1111/jcmm.70046.

Abstract

PIWI-interacting RNAs (piRNAs) are a typical class of small non-coding RNAs, which are essential for gene regulation, genome stability and so on. Accumulating studies have revealed that piRNAs have significant potential as biomarkers and therapeutic targets for a variety of diseases. However current computational methods face the challenge in effectively capturing piRNA-disease associations (PDAs) from limited data. In this study, we propose a novel method, MRDPDA, for predicting PDAs based on limited data from multiple sources. Specifically, MRDPDA integrates a deep factorization machine (deepFM) model with regularizations derived from multiple yet limited datasets, utilizing separate Laplacians instead of a simple average similarity network. Moreover, a unified objective function to combine embedding loss about similarities is proposed to ensure that the embedding is suitable for the prediction task. In addition, a balanced benchmark dataset based on piRPheno is constructed and a deep autoencoder is applied for creating reliable negative set from the unlabeled dataset. Compared with three latest methods, MRDPDA achieves the best performance on the pirpheno dataset in terms of the five-fold cross validation test and independent test set, and case studies further demonstrate the effectiveness of MRDPDA.

摘要

PIWI 相互作用 RNA(piRNA)是一类典型的小非编码 RNA,对基因调控、基因组稳定性等具有重要作用。越来越多的研究表明,piRNA 作为多种疾病的生物标志物和治疗靶点具有很大的潜力。然而,目前的计算方法在从有限的数据中有效地捕捉 piRNA-疾病关联(PDAs)方面面临挑战。在这项研究中,我们提出了一种新的方法 MRDPDA,用于基于来自多个有限数据源的有限数据预测 PDAs。具体来说,MRDPDA 将深度分解机(deepFM)模型与来自多个但有限的数据集的正则化相结合,利用单独的拉普拉斯而不是简单的平均相似性网络。此外,还提出了一个统一的目标函数来组合相似性的嵌入损失,以确保嵌入适合预测任务。此外,还构建了一个基于 piRPheno 的平衡基准数据集,并应用深度自动编码器从未标记的数据集中创建可靠的负集。与三种最新方法相比,MRDPDA 在五重交叉验证测试和独立测试集上在 pirpheno 数据集上取得了最佳性能,案例研究进一步证明了 MRDPDA 的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a054/11371490/8ed48e7b6d1a/JCMM-28-e70046-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验